• Chinese Journal of Lasers
  • Vol. 48, Issue 8, 0802013 (2021)
Zhanwen A1、2, Ying Wu1, Yu Xiao1, Ruikun Geng1, and Guisheng Zou1、*
Author Affiliations
  • 1Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
  • 2School of Mechanical Engineering, Qinghai University, Xining, Qinghai 810016, China
  • show less
    DOI: 10.3788/CJL202148.0802013 Cite this Article Set citation alerts
    Zhanwen A, Ying Wu, Yu Xiao, Ruikun Geng, Guisheng Zou. Research Progresses of Process Technology in Ultrafast Laser Micro-Hole Drilling[J]. Chinese Journal of Lasers, 2021, 48(8): 0802013 Copy Citation Text show less
    References

    [1] Rahman Z, Das A K, Chattopadhyaya S. Microhole drilling through electrochemical processes: a review[J]. Materials and Manufacturing Processes, 33, 1379-1405(2018).

    [2] Xing S L, Liu L, Zou G S et al. Effects of femtosecond laser parameters on hole drilling of silica glass[J]. Chinese Journal of Lasers, 42, 0403001(2015).

    [3] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2, 219-225(2008). http://www.opticsinfobase.org/ol/abstract.cfm?uri=BGPP-2010-BWB4

    [4] Sugioka K, Cheng Y. Ultrafast lasers-reliable tools for advanced materials processing[J]. Light: Science & Applications, 3, e149(2014). http://www.nature.com/articles/lsa201430#Fig8

    [5] Cheng J, Liu C S, Shang S et al. A review of ultrafast laser materials micromachining[J]. Optics & Laser Technology, 46, 88-102(2013). http://www.sciencedirect.com/science/article/pii/S0030399212003064

    [6] Jiang L, Wang A D, Li B et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application[J]. Light: Science & Applications, 7, 17134(2018).

    [7] Xia B, Jiang L, Wang S M et al. Femtosecond laser drilling of micro-holes[J]. Chinese Journal of Lasers, 40, 0201001(2013).

    [8] Wang Y Q, Zhang J Z, Liu Y S et al. Effect of femtosecond laser parameters on TiC ceramic micro-hole drilling[J]. Chinese Journal of Lasers, 41, 1003010(2014).

    [9] Du K, Li X W, Yang B D et al. Research progress of femtosecond laser microhole drilling on non-metallic materials[J]. Laser & Optoelectronics Progress, 57, 111417(2020).

    [10] Tamrin K F, Sheikh N A, Sapuan S M. Laser drilling of composite material: a review[M]. //Hole-Making and Drilling Technology for Composites. Amsterdam: Elsevier, 89-100(2019).

    [11] Nath A K. Laser drilling of metallic and nonmetallic substrates[M]. //Comprehensive Materials Processing. Amsterdam: Elsevier, 115-175(2014).

    [12] Momma C, Chichkov B N, Nolte S et al. Short-pulse laser ablation of solid targets[J]. Optics Communications, 129, 134-142(1996). http://www.sciencedirect.com/science/article/pii/0030401896002507

    [13] Haasler D, Finger J. Investigation of heat accumulation effects during deep hole percussion drilling by high power ultrashort pulsed laser radiation[J]. Journal of Laser Applications, 31, 022201(2019). http://www.researchgate.net/publication/332215172_Investigation_of_heat_accumulation_effects_during_deep_hole_percussion_drilling_by_high_power_ultrashort_pulsed_laser_radiation

    [14] Xia B, Jiang L, Li X W et al. High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum[J]. Applied Physics A, 119, 61-68(2015).

    [15] Zhang F, Dong X R, Yin K et al. Temperature effects on the geometry during the formation of micro-holes fabricated by femtosecond laser in PMMA[J]. Optics & Laser Technology, 100, 256-260(2018). http://www.sciencedirect.com/science/article/pii/S003039921730498X

    [16] Hattori J, Ito Y, Jo H et al. High-speed observation of pulse energy and pulse width dependences of damage generation in SiC during ultrashort pulse laser drilling[J]. Applied Physics A, 126, 1-6(2020). http://link.springer.com/article/10.1007/s00339-020-04018-y

    [17] Narazaki A, Takada H, Yoshitomi D et al. Study on nonthermal-thermal processing boundary in drilling of ceramics using ultrashort pulse laser system with variable parameters over a wide range[J]. Applied Physics A, 126, 1-8(2020). http://link.springer.com/article/10.1007/s00339-020-3410-2

    [18] Kononenko T V, Freitag C, Sovyk D N et al. Influence of pulse repetition rate on percussion drilling of Ti-based alloy by picosecond laser pulses[J]. Optics and Lasers in Engineering, 103, 65-70(2018).

    [19] Gruner A, Naumann L, Schille J et al. High pulse repetition frequency micro hole drilling of silicon using ultrashort pulse laser radiation[J]. Journal of Laser Micro, 14, 190-197(2019). http://www.researchgate.net/publication/338409868_High_Pulse_Repetition_Frequency_Micro_Hole_Drilling_of_Silicon_Using_Ultrashort_Pulse_Laser_Radiation

    [20] Döring S, Ullsperger T, Heisler F et al. Hole formation process in ultrashort pulse laser percussion drilling[J]. Physics Procedia, 41, 431-440(2013). http://www.sciencedirect.com/science/article/pii/S1875389213001132

    [21] Zhao W Q, Shen X W, Liu H D et al. Effect of high repetition rate on dimension and morphology of micro-hole drilled in metals by picosecond ultra-short pulse laser[J]. Optics and Lasers in Engineering, 124, 105811(2020). http://www.sciencedirect.com/science/article/pii/S014381661930243X

    [22] Wang R J, Dong X, Wang K D et al. Polarization effect on hole evolution and periodic microstructures in femtosecond laser drilling of thermal barrier coated superalloys[J]. Applied Surface Science, 537, 148001(2021). http://www.sciencedirect.com/science/article/pii/S0169433220327586

    [23] Nolte S, Momma C, Kamlage G et al. Polarization effects in ultrashort-pulse laser drilling[J]. Applied Physics A, 68, 563-567(1999). http://link.springer.com/article/10.1007%2Fs003390050941

    [24] Cho J H, Na S J. Theoretical analysis of keyhole dynamics in polarized laser drilling[J]. Journal of Physics D: Applied Physics, 40, 7638-7647(2007).

    [25] Führa B, Russ S, Hammers-Weber P et al. High precision drilling with ultra-short laser pulses[C]. //Lasers in Manufacturing Conference. [S.l.:s.n.], 1-10(2017).

    [26] Gaudfrin K, Lopez J, Mishchik K et al. Fused silica ablation by double femtosecond laser pulses: influence of polarization state[J]. Optics Express, 28, 15189-15206(2020). http://www.researchgate.net/publication/339293668_Fused_silica_ablation_by_double_femtosecond_laser_pulses_influence_of_polarization_state

    [27] Matsuoka Y, Kizuka Y, Inoue T. The characteristics of laser micro drilling using a Bessel beam[J]. Applied Physics A, 84, 423-430(2006). http://link.springer.com/article/10.1007/s00339-006-3629-6

    [28] He F, Yu J J, Tan Y X et al. Tailoring femtosecond 1.5-μm Bessel beams for manufacturing high-aspect-ratio through-silicon vias[J]. Scientific Reports, 7, 1-9(2017). http://europepmc.org/articles/PMC5241677/

    [29] Du K M. Thin layer ablation with lasers of different beam profiles: energy efficiency and over filling factor[J]. Proceedings of SPIE, 7202, 72020Q(2009). http://spie.org/Publications/Proceedings/Paper/10.1117/12.810158

    [30] Nasrollahi V, Penchev P, Batal A et al. Laser drilling with a top-hat beam of micro-scale high aspect ratio holes in silicon nitride[J]. Journal of Materials Processing Technology, 281, 116636(2020). http://www.sciencedirect.com/science/article/pii/S0924013620300509

    [31] Karimelahi S, Abolghasemi L, Herman P R. Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser[J]. Applied Physics A, 114, 91-111(2014).

    [32] Zhao W Q, Wang W J, Li B Q et al. Wavelength effect on hole shapes and morphology evolution during ablation by picosecond laser pulses[J]. Optics & Laser Technology, 84, 79-86(2016).

    [33] He C, Bühring J, Gillner A. Helical drilling of three-dimensional conical converging-diverging nozzle in steel using ultrashort laser pulses[J]. Procedia CIRP, 74, 305-309(2018). http://www.sciencedirect.com/science/article/pii/S2212827118309065

    [34] He C, Hartmann C, Fornaroli C et al. Temporal evolution of hole geometry and influences of energy deposition in ultra-short pulse helical drilling[C]. //Lasers Manufacturing Conference 2015. [S.l.:s.n.], 1-8(2015).

    [35] He C, Zibner F, Fornaroli C et al. High-precision helical cutting using ultra-short laser pulses[J]. Physics Procedia, 56, 1066-1072(2014). http://www.sciencedirect.com/science/article/pii/S1875389214001643

    [36] He C, Buehring J, Zibner F et al. Ultrafast laser helical drilling of three-dimensional shaped holes using synchronized adaption of energy deposition[J]. Journal of Laser Micro, 13, 31-35(2018). http://www.rwth-aachen.de/go/id/mazg/file/697423/lidx/1/

    [37] Zhao H L, Zhou R K, Zhao W et al. The design of reflective scanning device for drilling the inverted cone micro-hole with femtosecond laser pulses[J]. Acta Photonica Sinica, 43, 0914006(2014).

    [38] Zhang H Y, Di J K, Zhou M et al. An investigation on the hole quality during picosecond laser helical drilling of stainless steel 304[J]. Applied Physics A, 119, 745-752(2015).

    [39] Zhang Z F, Wang W H, Jiang R S et al. Investigation on geometric precision and surface quality of microholes machined by ultrafast laser[J]. Optics & Laser Technology, 121, 105834(2020).

    [40] Hu J, Guo S G, Luo L et al. Dynamic characteristic analysis of impinging jet in laser drilling[J]. Chinese Journal of Lasers, 35, 1250-1254(2008).

    [41] Wang Z Y, Chen K, Zuo T C et al. Study on the influence of assisted gas on laser drilling[J]. Laser Journal, 21, 44-46(2000).

    [42] Laakso M J O, Pagliano S, Shah U et al. Water in contact with the backside of a silicon substrate enables drilling of high-quality holes through the substrate using ultrashort laser pulses[J]. Optics Express, 28, 1394-1407(2020). http://www.researchgate.net/publication/338167503_Water_in_Contact_with_the_Backside_of_a_Silicon_Substrate_Enables_Drilling_of_High-Quality_Holes_Through_the_Substrate_Using_Ultrashort_Laser_Pulses

    [43] Li Y, Itoh K, Watanabe W et al. Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses[J]. Optics Letters, 26, 1912-1914(2001).

    [44] Hwang D J, Choi T Y, Grigoropoulos C P. Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass[J]. Applied Physics A, 79, 605-612(2004). http://link.springer.com/article/10.1007/s00339-004-2547-8

    [45] Liu Z, Gao Y B, Wu B X et al. Ultrasound-assisted water-confined laser micromachining: a novel machining process[J]. Manufacturing Letters, 2, 87-90(2014). http://www.sciencedirect.com/science/article/pii/S2213846314000133

    [46] Jiao L S, Zheng H Y, Zhang Y L et al. Picosecond laser drilling of silicon with applied voltage[J]. SN Applied Sciences, 1, 1-7(2018). http://link.springer.com/article/10.1007%2Fs42452-018-0091-y

    [47] Ito Y, Shinomoto R, Nagato K et al. Mechanisms of damage formation in glass in the process of femtosecond laser drilling[J]. Applied Physics A, 124, 1-8(2018). http://link.springer.com/article/10.1007/s00339-018-1607-4

    [48] Das D K, Pollock T M. Femtosecond laser machining of cooling holes in thermal barrier coated CMSX4 superalloy[J]. Journal of Materials Processing Technology, 209, 5661-5668(2009). http://www.sciencedirect.com/science/article/pii/S0924013609002210

    [49] Wang Z P, Feng G Y, Wang S T et al. Improving the quality of femtosecond laser processing micro-hole array by coated with aluminum film on fused silica sheet[J]. Optik, 128, 178-184(2017).

    [50] Förster D J, Weber R, Holder D et al. Estimation of the depth limit for percussion drilling with picosecond laser pulses[J]. Optics Express, 26, 11546-11552(2018). http://europepmc.org/abstract/MED/29716073

    [51] Bhuyan M K, Courvoisier F, Lacourt P A et al. High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams[J]. Optics Express, 18, 566-574(2010). http://europepmc.org/abstract/MED/20173876

    [52] Guo B, Liu W C, Zhao Q L et al. Review of water assisted laser micro-machining technology[J]. Journal of Harbin Institute of Technology, 52, 11-19(2020).

    [53] Zhang Z, Zhang G Y, Zhang W W et al. Mechanism analysis and preliminary processing test verification of water-air shrinkage based on new water-guided laser[J]. Applied Laser, 39, 291-296(2019).

    [54] Wang Y F, Yang F, Zhang W W. Research on laser and electrochemical hybrid machining of small holes based on total reflection of laser beam[J]. Electromachining & Mould, 49-54(2020).

    [55] Hofmann O, Stollenwerk J, Loosen P. Design of multi-beam optics for high throughput parallel processing[J]. Journal of Laser Applications, 32, 012005(2020).

    [56] Bruening S, Du K M, Jarczynski M et al. High-throughput micromachining with ultrashort pulsed lasers and multiple spots[J]. Journal of Laser Applications, 32, 012003(2020).

    [57] Bruening S, Jarczynski M, Du K et al. Large scale ultrafast laser micro texturing with multi-beams[J]. Journal of Laser Micro, 13, 254-262(2018).

    [58] Li J N, Tang Y, Kuang Z et al. Multi imaging-based beam shaping for ultrafast laser-material processing using spatial light modulators[J]. Optics and Lasers in Engineering, 112, 59-67(2019). http://www.sciencedirect.com/science/article/pii/S0143816618307115

    Zhanwen A, Ying Wu, Yu Xiao, Ruikun Geng, Guisheng Zou. Research Progresses of Process Technology in Ultrafast Laser Micro-Hole Drilling[J]. Chinese Journal of Lasers, 2021, 48(8): 0802013
    Download Citation