• Acta Photonica Sinica
  • Vol. 51, Issue 7, 0751417 (2022)
Jiazhe MA, Yanzhao YANG, Ling WANG*, and Wei FENG
Author Affiliations
  • School of Materials Science and Engineering,Tianjin University,Tianjin 300350,China
  • show less
    DOI: 10.3788/gzxb20225107.0751417 Cite this Article
    Jiazhe MA, Yanzhao YANG, Ling WANG, Wei FENG. Main-chain Chiral Liquid Crystal Elastomers(Invited)[J]. Acta Photonica Sinica, 2022, 51(7): 0751417 Copy Citation Text show less
    References

    [1] F REINITZER. Beiträge zur kenntniss des cholesterins. Monatshefte Für Chemie und Verwandte Teile anderer Wissenschaften, 9, 421-441(1888).

    [2] L SCHMIDT-MENDE, A FECHTENKOTTER, K MULLEN et al. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science, 293, 1119-1122(2001).

    [3] P P VERBUNT, S TSOI, M G DEBIJE et al. Increased efficiency of luminescent solar concentrators after application of organic wavelength selective mirrors. Optics Express, 20, A655-A668(2012).

    [4] T T LARSEN, A BJARKLEV, D S HERMANN et al. Optical devices based on liquid crystal photonic bandgap fibres. Optics Express, 11, 2589-2596(2003).

    [5] Shukuan SHI, Binxuan LI, Huai YANG et al. Bioinspired intelligent polymer materials for optical and thermal management. Chinese Journal of Liquid Crystals and Displays, 37, 250-263(2022).

    [6] Ling WANG, Quan LI. Stimuli-directing self-organized 3D liquid-crystalline nanostructures: from materials design to photonic applications. Advanced Functional Materials, 26, 10-28(2016).

    [7] Jiajia YANG, Xinfang ZHANG, Xuan ZHANG et al. Beyond the visible: bioinspired infrared adaptive materials. Advanced Materials, 33, e2004754(2021).

    [8] S JALILI-FIROOZINEZHAD, M H M MOGHADAM, M H GHANIAN et al. Polycaprolactone-templated reduced-graphene oxide liquid crystal nanofibers towards biomedical applications. RSC Advances, 7, 39628-39634(2017).

    [9] S J WOLTMAN, G D JAY, G P CRAWFORD. Liquid-crystal materials find a new order in biomedical applications. Nature Materials, 6, 929-938(2007).

    [10] K M HERBERT, H E FOWLER, J M MCCRACKEN et al. Synthesis and alignment of liquid crystalline elastomers. Nature Reviews Materials, 7, 23-38(2021).

    [11] T J WHITE, D J BROER. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nature Materials, 14, 1087-1098(2015).

    [12] C OHM, M BREHMER, R ZENTEL. Liquid crystalline elastomers as actuators and sensors. Advanced Materials, 22, 3366-3387(2010).

    [13] S M CLARKE, A R TAJBAKHSH, E M TERENTJEV et al. Soft elasticity and mechanical damping in liquid crystalline elastomers. Journal of Applied Physics, 89, 6530-6535(2001).

    [14] Li YU, H SHAHSAVAN, G RIVERS et al. Programmable 3D shape changes in liquid crystal polymer networks of uniaxial orientation. Advanced Functional Materials, 28, e1802809(2018).

    [15] Mengyuan YANG, Xiao YANG, Wei FENG et al. Near-infrared light-responsive intelligent liquid crystal nanocomposites. Chinese Journal of Liquid Crystals and Displays, 35, 631-644(2020).

    [16] Xiao YANG, Yuanhao CHEN, Xuan ZHANG et al. Bioinspired light-fueled water-walking soft robots based on liquid crystal network actuators with polymerizable miniaturized gold nanorods. Nano Today, 43, 101419(2022).

    [17] Pengfei LV, Xiao YANG, H K BISOYI et al. Stimulus-driven liquid metal and liquid crystal network actuators for programmable soft robotics. Materials Horizons, 8, 2475-2484(2021).

    [18] Pan XUE, H K BISOYI, Yuanhao CHEN et al. Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by MXene nanosheets. Angewandte Chemie, 60, 3390-3396(2021).

    [19] Yuanhao CHEN, Jiajia YANG, Xuan ZHANG et al. Light-driven bimorph soft actuators: design, fabrication, and properties. Materials Horizons, 8, 728-757(2021).

    [20] Yuanhao CHEN, Pengfei LV, Mengyuan YANG et al. Fabrication of light-driven soft actuator and its information security application. Chinese Journal of Liquid Crystal and Displays, 36, 229-236(2021).

    [21] Qiguang HE, Zhijian WANG, Yang WANG et al. Electrically controlled liquid crystal elastomer-based soft tubular actuator with multimodal actuation. Science Advances, 5, eaax5746(2019).

    [22] Ruochen LAN, Jian SUN, Chen SHEN et al. Near-infrared photodriven self-sustained oscillation of liquid-crystalline network film with predesignated polydopamine coating. Advanced Materials, 32, e1906319(2020).

    [23] Jiuan LV, Yuyun LIU, Jia WEI et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature, 537, 179-184(2016).

    [24] Pengfei LV, Xiaomin LU, Ling WANG et al. Nanocellulose-based functional materials: from chiral photonics to soft actuator and energy storage. Advanced Functional Materials, 31, e2104991(2021).

    [25] Xinlei PANG, Jiuan LV, Chongyu ZHU et al. Photodeformable azobenzene-containing liquid crystal polymers and soft actuators. Advanced Materials, 31, e1904224(2019).

    [26] Jiahao SUN, Yunpeng WANG, Wei LIAO et al. Ultrafast, high-contractile electrothermal-driven liquid crystal elastomer fibers towards artificial muscles. Small, 17, e2103700(2021).

    [27] Yunpeng WANG, Jiahao SUN, Wei LIAO et al. Liquid crystal elastomer twist fibers toward rotating microengines. Advanced Materials, 34, e2107840(2022).

    [28] Zhijian WANG, Kai LI, Qiguang HE et al. A light-powered ultralight tensegrity robot with high deformability and load capacity. Advanced Materials, 31, e1806849(2019).

    [29] Mengyuan YANG, Yiyi XU, Xuan ZHANG et al. Bioinspired phototropic MXene-reinforced soft tubular actuators for omnidirectional light-tracking and adaptive photovoltaics. Advanced Functional Materials, 32, e2201884(2022).

    [30] Haifeng YU, T IKEDA. Photo controllable liquid-crystalline actuators. Advanced Materials, 23, 2149-2180(2011).

    [31] Hao ZENG, P WASYLCZYK, D S WIERSMA et al. Light robots: bridging the gap between microrobotics and photomechanics in soft materials. Advanced Materials, 30, e1703554(2018).

    [32] Xinmu ZHANG, Pan XUE, Xiao YANG et al. Near-infrared light-driven shape-programmable hydrogel actuators loaded with metal-organic frameworks. ACS Applied Materials & Interfaces, 14, 11834-11841(2022).

    [33] Guojian CHEN, Wei HONG. Mechanochromism of structural-colored materials. Advanced Optical Materials, 8, e2000984(2020).

    [34] Luoran SHANG, Weixia ZHANG, Ke XU et al. Bio-inspired intelligent structural color materials. Materials Horizons, 6, 945-958(2019).

    [35] Ling WANG, A M URBAS, Quan LI. Nature-inspired emerging chiral liquid crystal nanostructures: from molecular self-assembly to DNA mesophase and nanocolloids. Advanced Materials, 32, e1801335(2020).

    [36] H K BISOYI, Quan LI. Light-directed dynamic chirality inversion in functional self-organized helical superstructures. Angewandte Chemie, 55, 2994-3010(2016).

    [37] K HISANO, S KIMURA, K KU et al. Mechano-optical sensors fabricated with multilayered liquid crystal elastomers exhibiting tunable deformation recovery. Advanced Functional Materials, 31, e2104702(2021).

    [38] A J J KRAGT, D C HOEKSTRA, S STALLINGA et al. 3D helix engineering in chiral photonic materials. Advanced Materials, 31, e1903120(2019).

    [39] D J MULDER, A P H J SCHENNING, C W M BASTIAANSEN. Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors. Journal of Materials Chemistry C, 2, 6695-6705(2014).

    [40] Wei HU, Jian SUN, Qian WANG et al. Humidity-responsive blue phase liquid-crystalline film with reconfigurable and tailored visual signals. Advanced Functional Materials, 30, e2004610(2020).

    [41] Wei HU, Ling WANG, Meng WANG et al. Ultrastable liquid crystalline blue phase from molecular synergistic self-assembly. Nature Communications, 12, 1440(2021).

    [42] Yanzhao YANG, Ling WANG, Huai YANG et al. 3D chiral photonic nanostructures based on blue-phase liquid crystals. Small Science, 1, e2100007(2021).

    [43] H FINKELMANN, S T KIM, A MUNOZ et al. Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Advanced Materials, 13, 1069-1072(2001).

    [44] A A F FROYEN, M WÜBBENHORST, D LIU et al. Electrothermal color tuning of cholesteric liquid crystals using interdigitated electrode patterns. Advanced Electronic Materials, 7, e2000958(2020).

    [45] H KIM, J CHOI, K K KIM et al. Biomimetic chameleon soft robot with artificial crypsis and disruptive coloration skin. Nature Communications, 12, 4658(2021).

    [46] A J J KRAGT, D J BROER, A P H J SCHENNING. Easily processable and programmable responsive semi-interpenetrating liquid crystalline polymer network coatings with changing reflectivities and surface topographies. Advanced Functional Materials, 28, e1704756(2017).

    [47] Ruochen LAN, Qian WANG, Chen SHEN et al. Humidity-induced simultaneous visible and fluorescence photonic patterns enabled by integration of covalent bonds and ionic crosslinks. Advanced Functional Materials, 31, e2106419(2021).

    [48] J TEYSSIER, S V SAENKO, MAREL DVAN DER et al. Photonic crystals cause active colour change in chameleons. Nature Communications, 6, 6368(2015).

    [49] Peng CHEN, Lingling MA, Wei HU et al. Chirality invertible superstructure mediated active planar optics. Nature Communications, 10, 2518(2019).

    [50] M MOIRANGTHEM, A P H J SCHENNING. Full color camouflage in a printable photonic blue-colored polymer. ACS Applied Materials & Interfaces, 10, 4168-4172(2018).

    [51] H KHANDELWAL, R C G M LOONEN, J L M HENSEN et al. Application of broadband infrared reflector based on cholesteric liquid crystal polymer bilayer film to windows and its impact on reducing the energy consumption in buildings. Journal of Materials Chemistry A, 2, 14622-14627(2014).

    [52] H KHANDELWAL, G H TIMMERMANS, M G DEBIJE et al. Dual electrically and thermally responsive broadband reflectors based on polymer network stabilized chiral nematic liquid crystals: the role of crosslink density. Chemical Communications, 52, 10109-10112(2016).

    [53] D Y KIM, C NAH, S W KANG et al. Free-standing and circular-polarizing chirophotonic crystal reflectors: photopolymerization of helical nanostructures. ACS Nano, 10, 9570-9576(2016).

    [54] Ling WANG, H K BISOYI, Zhigang ZHENG et al. Stimuli-directed self-organized chiral superstructures for adaptive windows enabled by mesogen-functionalized graphene. Materials Today, 20, 230-237(2017).

    [55] S KUMAR, J H KIM, Yushan SHI. What aligns liquid crystals on solid substrates?The role of surface roughness anisotropy. Physical Review Letters, 94, 077803(2005).

    [56] M T BRANNUM, A M STEELE, M C VENETOS et al. Light control with liquid crystalline elastomers. Advanced Optical Materials, 7, e1801683(2019).

    [57] Pei ZHANG, Guofu ZHOU, L T HAAN et al. 4D chiral photonic actuators with switchable hyper-reflectivity. Advanced Functional Materials, 31, e2007887(2020).

    [58] S U KIM, Y J LEE, Jiaqi LIU et al. Broadband and pixelated camouflage in inflating chiral nematic liquid crystalline elastomers. Nature Materials, 21, 41-46(2022).

    [59] A M MARTINEZ, M K MCBRIDE, T J WHITE et al. Reconfigurable and spatially programmable chameleon skin-like material utilizing light responsive covalent adaptable cholesteric liquid crystal elastomers. Advanced Functional Materials, 30, e2003150(2020).

    [60] S T KIM, H FINKELMANN. Cholesteric liquid single-crystal elastomers (LSCE) obtained by the anisotropic deswelling method. Macromolecular Rapid Communications, 22, 429-433(2001).

    [61] M O SAED, A H TORBATI, D P NAIR et al. Synthesis of programmable main-chain liquid-crystalline elastomers using a two-stage thiol-acrylate reaction. Journal of Visualized Experiments, e53546(2016).

    [62] R KIZHAKIDATHAZHATH, Yong GENG, V S R JAMPANI et al. Facile anisotropic deswelling method for realizing large-area cholesteric liquid crystal elastomers with uniform structural color and broad-range mechanochromic response. Advanced Functional Materials, 30, e1909537(2019).

    [63] Jiazhe MA, Yanzhao YANG, C VALENZUELA et al. Mechanochromic, shape-programmable and self-healable cholesteric liquid crystal elastomers enabled by dynamic covalent boronic ester bonds. Angewandte Chemie, 61, e202116219(2022).

    [64] E HEESWIJK, J J H KLOOS, J HEER et al. Well-adhering, easily producible photonic reflective coatings for plastic substrates. ACS Applied Materials & Interfaces, 10, 30008-30013(2018).

    [65] Pei ZHANG, A J J KRAGT, A P H J SCHENNING et al. An easily coatable temperature responsive cholesteric liquid crystal oligomer for making structural colour patterns. Journal of Materials Chemistry C, 6, 7184-7187(2018).

    [66] Pei ZHANG, Xiuyi SHI, A P H J SCHENNING et al. A patterned mechanochromic photonic polymer for reversible image reveal. Advanced Materials Interfaces, 7, e1901878(2019).

    [67] E P A HEESWIJK, Lanti YANG, N GROSSIORD et al. Tunable photonic materials via monitoring step-growth polymerization kinetics by structural colors. Advanced Functional Materials, 30, e1906833(2019).

    [68] J SOL, H SENTJENS, Lanti YANG et al. Anisotropic iridescence and polarization patterns in a direct ink written chiral photonic polymer. Advanced Materials, 33, e2103309(2021).

    [69] K KIM, Yuanhang GUO, J BAE et al. 4D printing of hygroscopic liquid crystal elastomer actuators. Small, 17, e2100910(2021).

    [70] Xiao KUANG, D J ROACH, Jiangtao WU et al. Advances in 4D printing: materials and applications. Advanced Functional Materials, 29, e1805290(2019).

    [71] M O SAED, C P AMBULO, H KIM et al. Molecularly-engineered, 4D-printed liquid crystal elastomer actuators. Advanced Functional Materials, 29, e1806412(2018).

    [72] Chenjing YANG, Baiheng WU, Jian RUAN et al. 3D-printed biomimetic systems with synergetic color and shape responses based on oblate cholesteric liquid crystal droplets. Advanced Materials, 33, e2006361(2021).

    [73] E C DAVIDSON, A KOTIKIAN, Shucong LI et al. 3D printable and reconfigurable liquid crystal elastomers with light-induced shape memory via dynamic bond exchange. Advanced Materials, 32, e1905682(2020).

    [74] Binjie JIN, Jiaqi LIU, Yunpeng SHI et al. Solvent-assisted 4D programming and reprogramming of liquid crystalline organogels. Advanced Materials, 34, e2107855(2022).

    [75] A KOTIKIAN, R L TRUBY, J W BOLEY et al. 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order. Advanced Materials, 30, e1706164(2018).

    [76] D MISTRY, N A TRAUGUTT, B SANBORN et al. Soft elasticity optimises dissipation in 3D-printed liquid crystal elastomers. Nature Communications, 12, 6677(2021).

    [77] M POZO, Li LIU, M PILZ DA CUNHA et al. Direct ink writing of a light-responsive underwater liquid crystal actuator with atypical temperature-dependent shape changes. Advanced Functional Materials, 30, e2005560(2020).

    [78] Mengqi FANG, Tao LIU, Yang XU et al. Ultrafast digital fabrication of designable architectured liquid crystalline elastomer. Advanced Materials, 33, e2105597(2021).

    [79] Shuo LI, Hedan BAI, Zheng LIU et al. Digital light processing of liquid crystal elastomers for self-sensing artificial muscles. Science Advances, 7, eabg3677(2021).

    [80] N A TRAUGUTT, D MISTRY, C LUO et al. Liquid-crystal-elastomer-based dissipative structures by digital light processing 3D printing. Advanced Materials, 32, e2000797(2020).

    [81] Zijun WANG, Zhijian WANG, Yue ZHENG et al. Three-dimensional printing of functionally graded liquid crystal elastomer. Science Advances, 6, eabc0034(2020).

    [82] A KOTIKIAN, J M MORALES, A LU et al. Innervated, self-sensing liquid crystal elastomer actuators with closed loop control. Advanced Materials, 33, e2101814(2021).

    [83] T H LIN, Yannian LI, C T WANG et al. Red, green and blue reflections enabled in an optically tunable self-organized 3D cubic nanostructured thin film. Advanced Materials, 25, 5050-5054(2013).

    [84] Yaqi QIU, Yanzhao YANG, C VALENZUELA et al. Near-infrared light-driven three-dimensional soft photonic crystals loaded with upconversion nanoparticles. Advanced Optical Materials, 10, e2102475(2022).

    [85] Meng WANG, Cheng ZOU, Jian SUN et al. Asymmetric tunable photonic bandgaps in self-organized 3d nanostructure of polymer-stabilized blue phase i modulated by voltage polarity. Advanced Functional Materials, 27, e1702261(2017).

    [86] Yanzhao YANG, Xuan ZHANG, Yuanhao CHEN et al. Bioinspired color-changing photonic polymer coatings based on three-dimensional blue phase liquid crystal networks. ACS Applied Materials & Interfaces, 13, 41102-41111(2021).

    [87] F CASTLES, S M MORRIS, J M HUNG et al. Stretchable liquid-crystal blue-phase gels. Nature Materials, 13, 817-821(2014).

    [88] Jiajia YANG, Weidong ZHAO, Zhou YANG et al. Photonic shape memory polymer based on liquid crystalline blue phase films. ACS Applied Materials & Interfaces, 11, 46124-46131(2019).

    [89] K R SCHLAFMANN, T J WHITE. Retention and deformation of the blue phases in liquid crystalline elastomers. Nature Communications, 12, 4916(2021).

    Jiazhe MA, Yanzhao YANG, Ling WANG, Wei FENG. Main-chain Chiral Liquid Crystal Elastomers(Invited)[J]. Acta Photonica Sinica, 2022, 51(7): 0751417
    Download Citation