• Journal of Electronic Science and Technology
  • Vol. 22, Issue 1, 100243 (2024)
Namat Bachir and Qurban Ali Memon*
Author Affiliations
  • Electrical Engineering Department, College of Engineering, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
  • show less
    DOI: 10.1016/j.jnlest.2024.100243 Cite this Article
    Namat Bachir, Qurban Ali Memon. Benchmarking YOLOv5 models for improved human detection in search and rescue missions[J]. Journal of Electronic Science and Technology, 2024, 22(1): 100243 Copy Citation Text show less
    Proposed approach using YOLOv5.
    Fig. 1. Proposed approach using YOLOv5.
    Sample dataset images.
    Fig. 2. Sample dataset images.
    Input and network image resolution: (a) input image resolution and (b) network image resolution.
    Fig. 3. Input and network image resolution: (a) input image resolution and (b) network image resolution.
    Classifier at different IOU thresholds: (a) precision and (b) recall.
    Fig. 4. Classifier at different IOU thresholds: (a) precision and (b) recall.
    Average precision: (a) precision–to-recall and (b) F1score.
    Fig. 5. Average precision: (a) precision–to-recall and (b) F1score.
    Two samples of positive detections with high confidence.
    Fig. 6. Two samples of positive detections with high confidence.
    False detections of YOLOv5L model (shadows, dark areas).
    Fig. 7. False detections of YOLOv5L model (shadows, dark areas).
    Network resolutiontestAPAP50
    320×3203878
    640×6406095
    832×8326496
    Table 1. Network resolution (%) YOLOv5 detection performance.
    ParameterSpecification
    Model nameIntel(R) Xeon(R) CPU @ 2.30 GHz
    CPU MHz2299.998
    Cache size46080 KB
    CPU cores2
    RAM12 GB
    GPUNvidia K80 / T4
    GPU memory clock0.82 GHz / 1.59 GHz
    Max execution time12 hours
    Max idle time90 minutes
    Model nameIntel(R) Xeon(R) CPU @ 2.30 GHz
    CPU (MHz)2299.998
    Table 2. Hardware machine specification of Google Collaboratory.
    ModelClassImagesLabelsmAP@0.5mAP @0.75mAP
    YOLOv5LAll79226050.9690.7430.643
    YOLOv4All79226050.9600.7100.610
    YOLOv3All79226050.9250.630.902
    Faster R-CNNAll79226050.9100.5100.500
    Table 3. Comparative results on the SAR dataset.
    ModelPrecisionRecall
    YOLOv5L0.9710.932
    YOLOv40.9600.910
    YOLOv30.9620.892
    Faster R-CNN0.6700.936
    Table 4. Precision-to-recall ratios for different models.
    ModelPrecisionRecallmAP
    YOLOv5s0.9400.9170.933
    YOLOv5m0.7750.7670.762
    YOLOv5L0.9710.9320.969
    Table 5. Performance comparison of YOLOv5 models on the SAR dataset.
    ModelPrecisionRecallmAP
    YOLOv5s0.7530.6940.731
    YOLOv5m0.7970.8120.810
    YOLOv5L0.9000.8930.864
    Table 6. Performance comparison of YOLOv5 models on the HERIDAL dataset.
    ModelPrecisionRecallmAP
    YOLOv5L0.9000.8930.864
    YOLOv40.8600.8300.783
    YOLOv30.8770.7800.752
    Faster R-CNN0.7700.8900.861
    Table 7. Comparison of YOLOv3, YOLOv4, YOLOv5L and faster R-CNN models on the HERIDAL dataset.
    Namat Bachir, Qurban Ali Memon. Benchmarking YOLOv5 models for improved human detection in search and rescue missions[J]. Journal of Electronic Science and Technology, 2024, 22(1): 100243
    Download Citation