[1] MA Y Z, ZHAO Q. A strategic review on processing routes towards scalable fabrication of perovskite solar cells[J]. J Energy Chem, 2022, 64: 538-560.
[2] FENG S N, QIN Q L, HAN X P, et al. Universal existence of localized single-photon emitters in the perovskite film of all-inorganic CsPbBr3 microcrystals[J]. Adv Mater, 2022, 34(1): 2106278.
[3] AKKERMAN Q A, RAINò G, KOVALENKO M V, et al. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals[J]. Nat Mater, 2018, 17(5): 394-405.
[4] CAI W S, LI H Y, LI M C, et al. Opportunities and challenges of inorganic perovskites in high-performance photodetectors[J]. J Phys D: Appl Phys, 2021, 54(29): 293002.
[5] CHEN S S, DAI X Z, XU S, et al. Stabilizing perovskite-substrate interfaces for high-performance perovskite modules[J]. Science, 2021, 373(6557): 902-907.
[6] ZOU G, CHEN Z M, LI Z C, et al. Blue perovskite light-emitting diodes: opportunities and challenges[J]. Acta Phys Chim Sin, 2021, 37(4): 2009002.
[7] SUN S Q, XU X W, SUN Q, et al. All-inorganic perovskite-based monolithic perovskite/organic tandem solar cells with 23.21% efficiency by dual-interface engineering[J]. Adv Energy Mater, 2023, 13(16): 2204347.
[8] QIAN Q, WAN Z, TAKENAKA H, et al. Photocarrier-induced persistent structural polarization in soft-lattice lead halide perovskites[J]. Nat Nanotechnol, 2023, 18(4): 357-364.
[9] ZHUGE M H, YIN J, LIU Y L, et al. Precise control of single-crystal perovskite nanolasers[J]. Adv Mater, 2023, 35(28): e2300344.
[10] LIU A, ZHU H H, BAI S, et al. High-performance inorganic metal halide perovskite transistors[J]. Nat Electron, 2022, 5(2): 78-83.
[11] ZHOU S, ZHOU G D, LI Y H, et al. Understanding charge transport in all-inorganic halide perovskite nanocrystal thin-film field effect transistors[J]. ACS Energy Lett, 2020, 5(8): 2614-2623.
[12] MONTECUCCO R, QUADRIVI E, PO R, et al. All-inorganic cesium-based hybrid perovskites for efficient and stable solar cells and modules[J]. Adv Energy Mater, 2021, 11(23): 2100672.
[13] DENG J D, CUI Y H, JIANG Z H, et al. Transition metal(ii) ion doping of CsPb2Br5/CsPbBr3 perovskite nanocrystals enables high luminescence efficiency and stability[J]. J Mater Chem C, 2022, 10(48): 18336-18342.
[14] PAN G C, BAI X, XU W, et al. Bright blue light emission of Ni2+ ion-doped CsPbClxBr3-x perovskite quantum dots enabling efficient light-emitting devices[J]. ACS Appl Mater Interfaces, 2020, 12(12): 14195-14202.
[15] PATRA D, SINGH S P. 2,2’-bipyridine-4,4’-dicarboxylic acid-mediated surface engineering of Mn-doped CsPbCl3 perovskite nanocrystals[J]. J Phys Chem C, 2023, 127(19): 9397-9406.
[16] ZHANG D, YU M M, XU Y B, et al. Solvothermal synthesis of perovskite CsPbCl3 nanoplates and improved photoluminescence performance through postsynthetic treatment[J]. Opt Mater, 2022, 127: 112257.
[17] SENANAYAK S P, DEY K, SHIVANNA R, et al. Charge transport in mixed metal halide perovskite semiconductors[J]. Nat Mater, 2023, 22(2): 216-224.
[18] CAO F R, LI L A. Progress of lead-free halide perovskites: from material synthesis to photodetector application[J]. Adv Funct Mater, 2021, 31(11): 2008275.
[19] HUANG C Y, LI H C, WU Y, et al. Inorganic halide perovskite quantum dots: a versatile nanomaterial platform for electronic applications[J]. Nanomicro Lett, 2022, 15(1): 16.
[20] YUCE H, MANDAL M, YALCINKAYA Y, et al. Improvement of photophysical properties of CsPbBr3 and Mn2+: CsPb(Br, Cl)3 perovskite nanocrystals by Sr2+ doping for white light-emitting diodes[J]. J Phys Chem C, 2022, 126(27): 11277-11284.
[21] GAO Q J, QI J H, CHEN K, et al. Halide perovskite crystallization processes and methods in nanocrystals, single crystals, and thin films[J]. Adv Mater, 2022, 34(52): 2200720.
[22] ZENG Z C, XU Y S, ZHANG Z S, et al. Rare-earth-containing perovskite nanomaterials: design, synthesis, properties and applications[J]. Chem Soc Rev, 2020, 49(4): 1109-1143.
[23] WIEGHOLD S, TRESBACK J, CORREA-BAENA J P, et al. Halide heterogeneity affects local charge carrier dynamics in mixed-ion lead perovskite thin films[J]. Chem Mater, 2019, 31(10): 3712-3721.
[24] AKMAN E, OZTURK T, XIANG W C, et al. The effect of B-site doping in all-inorganic CsPbIxBr3-x absorbers on the performance and stability of perovskite photovoltaics[J]. Energy Environ Sci, 2023, 16(2): 372-403.
[25] BRITES M J, BARREIROS M A, CORREGIDOR V, et al. Ultrafast low-temperature crystallization of solar cell graded formamidinium-cesium mixed-cation lead mixed-halide perovskites using a reproducible microwave-based process[J]. ACS Appl Energy Mater, 2019, 2(3): 1844-1853.
[26] LIU X, LI J, WANG X, et al. Inorganic lead-based halide perovskites: from fundamental properties to photovoltaic applications[J]. Mater Today, 2022, 61: 191-217.
[27] SONG J, XIE H B, LIM E L, et al. Progress and perspective on inorganic CsPbI2Br perovskite solar cells[J]. Adv Energy Mater, 2022, 12(40): 2201854.
[28] SWARNKAR A, MIR W J, NAG A. Can B-site doping or alloying improve thermal- and phase-stability of all-inorganic CsPbX3 (X = Cl, Br, I) perovskites?[J]. ACS Energy Lett, 2018, 3(2): 286-289.
[29] CHEN X, SUN Z G, CAI B, et al. Substantial improvement of operating stability by strengthening metal-halogen bonds in halide perovskites[J]. Adv Funct Mater, 2022, 32(22): 2112229.
[30] YONG Z J, GUO S Q, MA J P, et al. Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield[J]. J Am Chem Soc, 2018, 140(31): 9942-9951.
[31] SHI Y Q, LI R X, YIN G X, et al. Laser-induced secondary crystallization of CsPbBr3 perovskite film for robust and low threshold amplified spontaneous emission[J]. Adv Funct Mater, 2022, 32(49): 2207206.
[32] MONDAL N, DE A, SAMANTA A. Achieving near-unity photoluminescence efficiency for blue-violet-emitting perovskite nanocrystals[J]. ACS Energy Lett, 2019, 4(1): 32-39.
[33] STOUMPOS C C, KANATZIDIS M G. The renaissance of halide perovskites and their evolution as emerging semiconductors[J]. Acc Chem Res, 2015, 48(10): 2791-2802.
[34] HEO J M, CHO H, LEE S C, et al. Bright lead-free inorganic CsSnBr3 perovskite light-emitting diodes[J]. ACS Energy Lett, 2022, 7(8): 2807-2815.
[35] JIANG Y Q, LI B Y, ZHANG T X, et al. Photoluminescence mechanisms of all-inorganic cesium lead bromide perovskites revealed by single particle spectroscopy[J]. Chem Nano Mat, 2020, 6(3): 327-335.
[36] GUAN M Y, XIE Y L, WANG Y P, et al. Enhanced emission efficiency in doped CsPbBr3 perovskite nanocrystals: the role of ion valence[J]. J Mater Chem C, 2022, 10(39): 14737-14745.
[37] KAJINO Y, OTAKE S, YAMADA T, et al. Anti-Stokes photoluminescence from CsPbBr3 nanostructures embedded in a Cs4PbBr6 crystal[J]. Phys Rev Mater, 2022, 6(4): 43001.
[38] CUI K M, WEN Y Q, HAN X Y, et al. Intense blue emission from one-pot synthesized quaternary CsZnxPb1-xBr3 perovskite quantum dots[J]. Opt Mater, 2023, 136: 113441.
[39] PENG C C, ZHANG R, CHEN H T, et al. A demulsification-crystallization model for high-quality perovskite nanocrystals[J]. Adv Mater, 2023, 35(2): e2206969.
[40] JIANG Y Q, LI B Y, ZHANG T X, et al. Photoluminescence mechanisms of all-inorganic cesium lead bromide perovskites revealed by single particle spectroscopy[J]. Chem Nano Mat, 2020, 6(3): 327-335.
[41] SONG J Z, LI J H, LI X M, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3)[J]. Adv Mater, 2015, 27(44): 7162-7167.
[42] LI L Y, YU Y T, LI P, et al. The universal growth of ultrathin perovskite single crystals[J]. Adv Mater, 2022, 34(20): 2108396.
[43] AHMED G H, YIN J, BAKR O M, et al. Successes and challenges of core/shell lead halide perovskite nanocrystals[J]. ACS Energy Lett, 2021, 6(4): 1340-1357.
[44] SONG J, XIE H B, LIM E L, et al. Progress and perspective on inorganic CsPbI2Br perovskite solar cells[J]. Adv Energy Mater, 2022, 12(40): 2201854.
[45] KANG C T, XU S H, RAO H S, et al. All-inorganic CsPb2I4Br/CsPbI2Br 2D/3D bulk heterojunction boosting carbon-based CsPbI2Br perovskite solar cells with an efficiency of over 15%[J]. ACS Energy Lett, 2023, 8(2): 909-916.
[46] SHEN C Y, ZHAO Y, YUAN L, et al. Transition metal ion doping perovskite nanocrystals for high luminescence quantum yield[J]. Chem Eng J, 2020, 382: 122868.
[47] PAROBEK D, ROMAN B J, DONG Y T, et al. Exciton-to-dopant energy transfer in Mn-doped cesium lead halide perovskite nanocrystals[J]. Nano Lett, 2016, 16(12): 7376-7380.
[48] CHEN D Q, FANG G L, CHEN X, et al. Mn-Doped CsPbCl3 perovskite nanocrystals: solvothermal synthesis, dual-color luminescence and improved stability[J]. J Mater Chem C, 2018, 6(33): 8990-8998.
[49] WANG K L, SU Z H, LOU Y H, et al. Rapid nucleation and slow crystal growth of CsPbI3 films aided by solvent molecular sieve for perovskite photovoltaics[J]. Adv Energy Mater, 2022, 12(31): 2201274.
[50] HOU S C, GANGISHETTY M K, QUAN Q M, et al. Efficient blue and white perovskite light-emitting diodes via manganese doping[J]. Joule, 2018, 2(11): 2421-2433.
[51] QIAO T, PAROBEK D, DONG Y T, et al. Photoinduced Mn doping in cesium lead halide perovskite nanocrystals[J]. Nanoscale, 2019, 11(12): 5247-5253.
[52] CHANG Q Y, ZHOU X J, JIANG S, et al. Dual-mode luminescence temperature sensing performance of manganese (II) doped CsPbCl3 perovskite quantum dots[J]. Ceram Int, 2022, 48(22): 33645-33652.
[53] ZOU S, LIU Y, LI J, et al. Stabilizing cesium lead halide perovskite lattice through Mn (II) substitution for air-stable light-emitting diodes[J]. J Am Chem Soc, 2017, 139(33): 11443-11450.
[54] PAROBEK D, ROMAN B J, DONG Y T, et al. Exciton-to-dopant energy transfer in Mn-doped cesium lead halide perovskite nanocrystals[J]. Nano Lett, 2016, 16(12): 7376-7380.
[55] GUO H, ZHU Y Z, CHEN J P, et al. Shallow trap mediated temperature-dependent exciton and Mn2+ photoluminescence in CsPbCl3: Mn2+ nanocrystals[J]. J Appl Phys, 2022, 132(3): 035102.
[56] GAO Y, REN F M, SUN D R, et al. Elimination of unstable residual lead iodide near the buried interface for the stability improvement of perovskite solar cells[J]. Energy Environ Sci, 2023, 16(5): 2295-2303.
[57] FUTSCHER M H, GANGISHETTY M K, CONGREVE D N, et al. Manganese doping stabilizes perovskite light-emitting diodes by reducing ion migration[J]. ACS Appl Electron Mater, 2020, 2(6): 1522-1528.
[58] JIN X Y, MA K L, CHAKKAMALAYATH J, et al. In situ photocatalyzed polymerization to stabilize perovskite nanocrystals in protic solvents[J]. ACS Energy Lett, 2022, 7(2): 610-616.
[59] GENG S N, XIAO Z W. Can nitride perovskites provide the same superior optoelectronic properties as lead halide perovskites?[J]. ACS Energy Lett, 2023, 8(4): 2051-2057.
[60] WANG W Z, LI J K, DUAN G B, et al. Study on the Mn-doped CsPbCl3 perovskite nanocrystals with controllable dual-color emission via energy transfer[J]. J Alloys Compd, 2020, 821: 153568.
[61] YANG W Q, JO S H, TANG Y P, et al. Overcoming charge confinement in perovskite nanocrystal solar cells[J]. Adv Mater, 2023: 2304533.
[62] WANG N C, GUO S B, CHEN Q C, et al. Halogen-content-dependent photoluminescence of Mn2+-doped CsPbCl3 nanocrystals[J]. J Am Ceram Soc, 2022, 105(7): 4763-4774.
[63] ZHANG L W, XU L, ZHU M, et al. Pink all-inorganic halide perovskite nanocrystals with adjustable characteristics: fully reversible cation exchange, improving the stability of dopant emission and light-emitting diode application[J]. J Alloys Compd, 2020, 818: 152913.
[64] CHEN M Y, CAO S, XING K, et al. Aluminum chloride assisted synthesis of near-unity emitting Mn2+-doped CsPbCl3 perovskite nanocrystals for bright white light-emitting diodes[J]. J Mater Chem C, 2022, 10(26): 9849-9857.
[65] LIM E L, YANG J X, WEI Z H. Inorganic CsPbI2Br halide perovskites: from fundamentals to solar cell optimizations[J]. Energy Environ Sci, 2023, 16(3): 862-888.
[66] MA D X, TODOROVI? P, MESHKAT S, et al. Chloride insertion-immobilization enables bright, narrowband, and stable blue-emitting perovskite diodes[J]. J Am Chem Soc, 2020, 142(11): 5126-5134.
[67] ZHANG F Y, LIU Y C, WEI S Q, et al. Microscopic morphology independence in linear absorption cross-section of CsPbBr3 nanocrystals[J]. Sci China Mater, 2021, 64(6): 1418-1426.
[68] ZHOU X J, ZHAO S C, ZHANG J, et al. FA+ and Mn2+ codoped CsPbCl3 perovskite quantum dots with super thermal stability[J]. Ceram Int, 2023, 49(1): 1002-1008.
[69] XIA W L, REN Z W, ZHENG Z S, et al. Highly stable lanthanide-doped CsPbI3 perovskite nanocrystals with near-unity quantum yield for efficient red light-emitting diodes[J]. Nanoscale, 2023, 15(3): 1109-1118.
[70] DAS S, SAHOO R C, SHIT S, et al. Improved ferromagnetism and transport behaviour in La2CoMnO6 double perovskite by Ni doping at the Co site[J]. Appl Phys A, 2022, 128(12): 1-9.
[71] CHEN W J, HUANG Z M, YAO H T, et al. Highly bright and stable single-crystal perovskite light-emitting diodes[J]. Nat Photon, 2023, 17(5): 401-407.
[72] CHEN R J, XU Y, WANG S, et al. Zinc ions doped cesium lead bromide perovskite nanocrystals with enhanced efficiency and stability for white light-emitting diodes[J]. J Alloys Compd, 2021, 866: 158969.
[73] MISHRA S, TAKHELLAMBAM D, DE A K, et al. Stable CsPbI3-mesoporous alumina composite thin film at ambient condition: preparation, characterization, and study of ultrafast charge-transfer dynamics[J]. J Phys Chem C, 2021, 125(6): 3285-3294.
[74] GOYAL A, ANDRIOTI E, TANG Y, et al. Mechanochemical synthesis of stable, quantum-confined CsPbBr3 perovskite nanocrystals with blue-green emission and high PLQY[J]. J Phys Mater, 2022, 5(2): 024005.
[75] KERNER R A, COHEN A V, XU Z J, et al. Electrochemical doping of halide perovskites by noble metal interstitial cations[J]. Adv Mater, 2023, 35(29): 2302206.
[76] SHEN X Y, KANG K, YU Z K, et al. Passivation strategies for mitigating defect challenges in halide perovskite light-emitting diodes[J]. Joule, 2023, 7(2): 272-308.
[77] JEEVARAJ M, DEVENDRAN P, NALLAMUTHU N, et al. Influence of Mn2+ doping on the optical properties of Cs2AgBiCl6 double perovskite luminescent phosphors[J]. J Mater Sci Mater Electron, 2023, 34(1): 1-14.
[78] CHEN Y, DING X L, HE H B, et al. Divalent organic cations as a novel protective layer for perovskite materials[J]. J Mater Chem A, 2023, 11(22): 11684-11695.
[79] KIM Y C, JEONG H J, KIM S T, et al. Luminescent down-shifting CsPbBr3 perovskite nanocrystals for flexible Cu(In, Ga)Se2 solar cells[J]. Nanoscale, 2020, 12(2): 558-562.
[80] LI J K, WANG B, LIU Z M. Phase evolution from CsPbBr3: Cu to Cs4PbBr6: Cu quantum dots with stable blue emission[J]. J Lumin, 2021, 240: 118413.
[81] LI M, XU J T, SONG Y, et al. Enhance luminescence or change morphology: effect of the doping method on Cu2+-doped CsPbBr3 perovskite nanocrystals[J]. CrystEngComm, 2022, 24(45): 7962-7970.
[82] WANG B, LIU L J, LIU B, et al. Study on fluorescence properties and stability of Cu2+-Substituted CsPbBr3 perovskite quantum dots[J]. Phys B Condens Matter, 2020, 599: 412488.
[83] YAO Z W, BI C H, LIU A Q, et al. High brightness and stability pure-blue perovskite light-emitting diodes based on a novel structural quantum-dot film[J]. Nano Energy, 2022, 95: 106974.
[84] BI C H, WANG S X, LI Q, et al. Thermally stable copper(II)-doped cesium lead halide perovskite quantum dots with strong blue emission[J]. J Phys Chem Lett, 2019, 10(5): 943-952.
[85] YAO Z Y, YIN Y L, XIA Y, et al. Unique luminescence properties in Zn2+-doped CsPbBr3 perovskite nanocrystals[J]. Nano, 2022, 17(10): 2250078.
[86] NARESH V, LEE N. Zn(II)-doped cesium lead halide perovskite nanocrystals with high quantum yield and wide color tunability for color-conversion light-emitting displays[J]. ACS Appl Nano Mater, 2020, 3(8): 7621-7632.
[87] SHEN X Y, ZHANG Y, KERSHAW S V, et al. Zn-alloyed CsPbI3 nanocrystals for highly efficient perovskite light-emitting devices[J]. Nano Lett, 2019, 19(3): 1552-1559.
[88] CHEN R J, XU Y, WANG S, et al. Zinc ions doped cesium lead bromide perovskite nanocrystals with enhanced efficiency and stability for white light-emitting diodes[J]. J Alloys Compd, 2021, 866: 158969.
[89] SONG L, ZHANG Q, ULLAH S, et al. Improved exciton photoluminescence of Zn-doped quasi-2D perovskite nanocrystals and their application as luminescent materials in light-emitting devices[J]. J Mater Chem C, 2023, 11(13): 4526-4535.
[90] HE Y M, ZHENG K B, HENRY P F, et al. Direct observation of size-dependent phase transition in methylammonium lead bromide perovskite microcrystals and nanocrystals[J]. ACS Omega, 2022, 7(44): 39970-39974.
[91] ZENG Y T, LI Z R, CHANG S P, et al. Bright CsPbBr3 perovskite nanocrystals with improved stability by in-situ Zn-doping[J]. Nanomaterials, 2022, 12(5): 759.
[92] WANG P, WU Z H, WU M Y, et al. All-solution-processed, highly efficient and stable green light-emitting devices based on Zn-doped CsPbBr3/ZnS heterojunction quantum dots[J]. J Mater Sci, 2021, 56(6): 4161-4171.
[93] XIA W L, REN Z W, ZHENG Z S, et al. Highly stable lanthanide-doped CsPbI3 perovskite nanocrystals with near-unity quantum yield for efficient red light-emitting diodes[J]. Nanoscale, 2023, 15(3): 1109-1118.
[94] POLISHCHUK S, PUPPIN M, CREPALDI A, et al. Nanoscale-resolved surface-to-bulk electron transport in CsPbBr3 perovskite[J]. Nano Lett, 2022, 22(3): 1067-1074.
[95] LI J H, CHEN J W, XU L M, et al. A zinc non-halide dopant strategy enables efficient perovskite CsPbI3 quantum dot-based light-emitting diodes[J]. Mater Chem Front, 2020, 4(5): 1444-1453.
[96] XU L, ZHEN C M, SHUI Z Z, et al. Jahn-Taller distortion on exchange interactions between cations in Mn x Cu1-x Co2O4 system[J]. J Phys D: Appl Phys, 2022, 55(43): 435003.
[97] YANG H X, YIN W X, DONG W, et al. Enhancing the light-emitting performance and stability in CsPbBr3 perovskite quantum dots via simultaneous doping and surface passivation[J]. J Mater Chem C, 2020, 8(41): 14439-14445.
[98] WANG D, LI W J, DU Z B, et al. CoBr2-doping-induced efficiency improvement of CsPbBr3 planar perovskite solar cells[J]. J Mater Chem C, 2020, 8(5): 1649-1655.
[99] XU T F, XIANG W C, KUBICKI D J, et al. Simultaneous lattice engineering and defect control via cadmium incorporation for high-performance inorganic perovskite solar cells[J]. Adv Sci, 2022, 9(36): 2204486.
[100] ZHAO A Q, ZHANG J L, DI Y S, et al. Fluorescent variations during the phase conversion of Cs-Pb-Br compounds[J]. J Alloys Compd, 2020, 830: 154731.
[101] HU X B, XU Y Q, WANG J C, et al. Fine CsPbX3@PVDF-HFP/PS electrospun nanofibers with efficient emission and high stability toward multifunctional fluorescent sensor[J]. Chem Eng J, 2023, 451: 139031.
[102] ZHOU Y J, PAN A Z, SHI C Y, et al. Superhydrophobic luminous nanocomposites from CsPbX3 perovskite nanocrystals encapsulated in organosilica[J]. Appl Surf Sci, 2020, 515: 146004.
[103] PRADHAN N. Tips and twists in making high photoluminescence quantum yield perovskite nanocrystals[J]. ACS Energy Lett, 2019, 4(7): 1634-1638.
[104] RANA P J S, SWETHA T, MANDAL H, et al. Energy transfer dynamics of highly stable Fe3+ doped CsPbCl3 perovskite nanocrystals with dual-color emission[J]. J Phys Chem C, 2019, 123(27): 17026-17034.
[105] HU Y, ZHANG X Y, YANG C Q, et al. Fe2+ doped in CsPbCl3 perovskite nanocrystals: impact on the luminescence and magnetic properties[J]. RSC Adv, 2019, 9(57): 33017-33022.
[106] WU C, LI Y, XIA Z Y, et al. Enhancing photoluminescence of CsPb(ClxBr1-x)3 perovskite nanocrystals by Fe2+ doping[J]. Nanomaterials, 2023, 13(3): 533.
[107] LIU W, CHU L A, LIU N J, et al. Efficient perovskite solar cells fabricated by manganese cations incorporated in hybrid perovskites[J]. J Mater Chem C, 2019, 7(38): 11943-11952.
[108] SUN R, ZHOU D L, WANG Y, et al. Highly efficient ligand-modified manganese ion doped CsPbCl3 perovskite quantum dots for photon energy conversion in silicon solar cells[J]. Nanoscale, 2020, 12(36): 18621-18628.
[109] GONG X, PAN H, WANG M K. Highly efficient perovskite solar cells via nickel passivation[J]. Adv Funct Mater, 2018, 28(50): 1804286.
[110] KHAN U, YU Z N, AHMAD KHAN A, et al. High-performance CsPbI2Br perovskite solar cells with zinc and manganese doping[J]. Nanoscale Res Lett, 2019, 14(1): 1-6.
[111] LIANG J, WANG C X, WANG Y R, et al. All-inorganic perovskite solar cells[J]. J Am Chem Soc, 2016, 138(49): 15829-15832.
[112] TANG H J, WANG Y H, CHEN Y M, et al. Ultrahigh-Q lead halide perovskite microlasers[J]. Nano Lett, 2023, 23(8): 3418-3425.
[113] TIAN J Y, TAN Q Y, WANG Y T, et al. Perovskite quantum dot one-dimensional topological laser[J]. Nat Commun, 2023, 14(1): 1433.
[114] CAO X H, XING S Y, LAI R C, et al. Low-threshold, external-cavity-free flexible perovskite lasers[J]. Adv Funct Mater, 2023, 33(19): 2211841.
[115] CHEN Y, YU M H, YE S, et al. All-inorganic CsPbBr3 perovskite quantum dots embedded in dual-mesoporous silica with moisture resistance for two-photon-pumped plasmonic nanoLasers[J]. Nanoscale, 2018, 10(14): 6704-6711.
[116] CUI M M, YANG A P, SUN M Y, et al. 2.5-5.5 μm mid-infrared emission from Ni2+-doped chalcohalide glass ceramics containing CsPbI3 perovskite nanocrystals[J]. J Am Ceram Soc, 2021, 104(11): 5593-5598.
[117] ZOU S Y, ZHAO X A, LYU J, et al. Light amplification in Fe-doped CsPbBr3 crystal microwire excited by continuous-wave laser[J]. J Phys Chem Lett, 2023, 14(20): 4815-4821.