• Journal of the Chinese Ceramic Society
  • Vol. 51, Issue 6, 1565 (2023)
FENG Haixia1,*, JIAO Yunjie2, CAO Xiying1, LIU Jun1, and HAN Yihui1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    FENG Haixia, JIAO Yunjie, CAO Xiying, LIU Jun, HAN Yihui. Effect of Steel Fiber on Thermal Shock Resistance of Mullite Castable[J]. Journal of the Chinese Ceramic Society, 2023, 51(6): 1565 Copy Citation Text show less
    References

    [1] HASSELMAN D P H. Elastic energy at fracture and surface energy as design criteria for thermal shock[J]. J Am Ceram Soc, 1963, 46(11): 535-540.

    [3] AKSEL C, RILEY F L. Young′s modulus measurements of magnesia-spinel composites using load-deflection curves, sonic modulus, strain gauges and Rayleigh waves[J]. J Eur Ceram Soc, 2003, 23(16): 3089-3096.

    [4] MIYAJI D Y, TONNESEN T, RODRIGUES J A. Fracture energy and thermal shock damage resistance of refractory castables containing eutectic aggregates[J]. Ceram Int, 2014, 40(9): 15227-15239.

    [5] HOL?APEK O, REITERMAN P, KONVALINKA P. Binder for refractory cement composites-hydration, changing due to high temperatures and fracture Energy[J]. Mater Sci Forum, 2015, 824: 185–190.

    [7] VARGAS R, NEGGERS J, CANTO R B, et al. Analysis of wedge splitting test on refractory castable via integrated DIC[J]. J Eur Ceram Soc, 2016, 36(16): 4309-4317.

    [8] VARGAS R, NEGGERS J, CANTO R B, et al. Comparison of two full-field identification methods for the wedge splitting test on a refractory[J]. J Eur Ceram Soc, 2018, 38(16): 5569-5579.

    [10] RIBEIRO S, RODRIGUES J A. The influence of microstructure on the maximum load and fracture energy of refractory castables[J]. Ceram Int, 2010, 36(1): 263-274.

    [11] CUENCA E, FERRARA L. Fracture toughness parameters to assess crack healing capacity of fiber reinforced concrete under repeated cracking-healing cycles[J]. Theor Appl Fract Mech, 2020, 106: 1-12.

    [12] DAI Y J, LI Y W, JIN S L, et al. Fracture behavior of magnesia refractory materials under combined cyclic thermal shock and mechanical loading conditions[J]. J Am Ceram Soc, 2019, 103(3): 1956-1969.

    [13] LEE W E, VIEIRA W, ZHANG S, et al. Castable refractory concretes[J]. Int Mater Rev, 2001, 46(3): 145-167.

    [14] BELRHITI Y, POP O, GERMANEAU A, et al. Investigation of the impact of micro-cracks on fracture behavior of magnesia products using wedge splitting test and digital image correlation[J]. J Eur Ceram Soc, 2015, 35(2): 823-829.

    [15] ZHU T B, LI Y W, SANG S B, et al. Fracture behavior of low carbon MgO-C refractories using the wedge splitting test[J]. J Eur Ceram Soc, 2017, 37(4): 1789-1797.

    [16] HARMUTH H, RIEDER K, KROBATH M, et al. Investigation of the nonlinear fracture behaviour of ordinary ceramic refractory materials[J]. Mater Sci Eng, A, 1996, 214: 53-61.

    [17] HARMUTH H. Stability of crack propagation associated with fracture energy determined by wedge splitting specimen[J]. Theor Appl Fract Mech, 1995, 23: 103-108.

    [19] LI Daibing. Investigation on the thermal shock resistance of the corundum-spinel porous plug for ladle (in Chinese dissertation). Luoyang: Luoyang Insitute of Refracotory Research, 2008.

    FENG Haixia, JIAO Yunjie, CAO Xiying, LIU Jun, HAN Yihui. Effect of Steel Fiber on Thermal Shock Resistance of Mullite Castable[J]. Journal of the Chinese Ceramic Society, 2023, 51(6): 1565
    Download Citation