• Photonics Research
  • Vol. 8, Issue 1, 32 (2020)
Zhiyu Zhang, Hao Suo, Xiaoqi Zhao, and Chongfeng Guo*
Author Affiliations
  • National Key Laboratory of Photoelectric Technology and Functional Materials (Culture Base) in Shaanxi Province, National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Institute of Photonics & Photon-Technology, Northwest University, Xi’an 710069, China
  • show less
    DOI: 10.1364/PRJ.8.000032 Cite this Article Set citation alerts
    Zhiyu Zhang, Hao Suo, Xiaoqi Zhao, Chongfeng Guo. 808 nm laser triggered self-monitored photo-thermal therapeutic nano-system Y2O3: Nd3+/Yb3+/Er3+@SiO2@Cu2S[J]. Photonics Research, 2020, 8(1): 32 Copy Citation Text show less
    References

    [1] K. E. Jones, N. G. Patel, M. A. Levy, A. Storeygard, D. Balk, J. L. Gittleman, P. Daszak. Global trends in emerging infectious diseases. Nature, 451, 990-993(2008).

    [2] J. W. Costerton, P. S. Stewart, E. P. Greenberg. Bacterial biofilms: a common cause of persistent infections. Science, 284, 1318-1322(1999).

    [3] S. H. Kim, E. B. Kang, C. J. Jeong, S. M. Sharker, I. In, S. Y. Park. Light controllable surface coating for effective photothermal killing of bacteria. ACS Appl. Mater. Interface, 7, 15600-15606(2015).

    [4] Q. Xiao, X. Zheng, W. Bu, W. Ge, S. Zhang, F. Chen, Y. Hua. A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy. J. Am. Chem. Soc., 135, 13041-13048(2013).

    [5] Z. H. Miao, H. Wang, H. Yang, Z. Li, L. Zhen, C. Y. Xu. Glucose-derived carbonaceous nanospheres for photoacoustic imaging and photothermal therapy. ACS Appl. Mater. Interface, 8, 15904-15910(2016).

    [6] H. Suo, X. Zhao, Z. Zhang, C. Guo. 808 nm light-triggered thermometer-heater up-converting platform based on Nd3+-sensitized yolk-shell GdOF@SiO2. ACS Appl. Mater. Interface, 9, 43438-43448(2017).

    [7] G. Chen, T. Y. Ohulchanskyy, W. C. Law, H. Ågren, P. N. Prasad. Monodisperse NaYbF4:Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties. Nanoscale, 3, 2003-2008(2011).

    [8] Z. Cao, L. Feng, G. Zhang, J. Wang, S. Shen, D. Li, X. Yang. Semiconducting polymer-based nanoparticles with strong absorbance in NIR-II window for in vivo photothermal therapy and photoacoustic imaging. Biomaterials, 155, 103-111(2018).

    [9] E. C. Ximendes, W. Q. Santos, U. Rocha, U. K. Kagola, F. Sanz-Rodríguez, N. Fernández, C. D. Brites. Unveiling in vivo subcutaneous thermal dynamics by infrared luminescent nanothermometers. Nano Lett., 16, 1695-1703(2016).

    [10] G. Tian, X. Zhang, Z. J. Gu, Y. L. Zhao. Recent advances in upconversion nanoparticles-based multifunctional nanocomposites for combined cancer therapy. Adv. Mater., 27, 7692-7712(2015).

    [11] W. He, K. Ai, C. Jiang, Y. Li, X. Song, L. Lu. Plasmonic titanium nitride nanoparticles for in vivo photoacoustic tomography imaging and photothermal cancer therapy. Biomaterials, 132, 37-47(2017).

    [12] H. Suo, X. Zhao, Z. Zhang, R. Shi, Y. Wu, J. Xiang, C. Guo. Local symmetric distortion boosted photon up-conversion and thermometric sensitivity in lanthanum oxide nanospheres. Nanoscale, 10, 9245-9251(2018).

    [13] U. Rocha, C. Jacinto da Silva, W. F. Silva, I. Guedes, A. Benayas, L. M. Maestro, D. Jaque. Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles. ACS Nano, 7, 1188-1199(2013).

    [14] O. A. Savchuk, J. J. Carvajal, M. C. Pujol, E. W. Barrera, J. Massons, M. Aguilo, F. Díaz. Ho, Yb: KLu(WO4)2 nanoparticles: a versatile material for multiple thermal sensing purposes by luminescent thermometry. J. Phys. Chem. C, 119, 18546-18558(2015).

    [15] M. Lin, L. Xie, Z. Wang, B. S. Richards, G. Gao, J. Zhong. Facile synthesis of mono-disperse sub-20 nm NaY(WO4)2:Er3+, Yb3+ upconversion nanoparticles: a new choice for nanothermometry. J. Mater. Chem. C, 7, 2971-2977(2019).

    [16] C. D. S. Brites, S. Balabhadra, L. D. Carlos. Lanthanide-based thermometers: at the cutting-edge of luminescence thermometry. Adv. Opt. Mater., 7, 1801239(2019).

    [17] C. D. S. Brites, A. Millán, L. D. Carlos. Lanthanides in luminescent thermometry. Handbook on the Physics and Chemistry of Rare Earths, 49, 339-427(2016).

    [18] Z. Zhou, Y. Yan, K. Hu, Y. Zou, Y. Li, R. Ma, Q. Zhang. Autophagy inhibition enabled efficient photo-thermal therapy at a mild temperature. Biomaterials, 141, 116-124(2017).

    [19] M. Abbas, Q. Zou, S. Li, X. Yan. Self-assembled peptide-and protein-based nanomaterials for antitumor photodynamic and photothermal therapy. Adv. Mater., 29, 1605021(2017).

    [20] R. Lv, P. Yang, F. He, S. Gai, G. Yang, J. Lin. Hollow structured Y2O3:Yb/Er-CuxS nanospheres with controllable size for simultaneous chemo/photothermal therapy and bioimaging. Chem. Mater., 27, 483-496(2015).

    [21] Z. Zhang, H. Suo, X. Zhao, D. Sun, L. Fan, C. Guo. NIR-to-NIR deep penetrating nanoplatforms Y2O3:Nd3+/Yb3+@SiO2@Cu2S towards highly efficient photothermal ablation. ACS Appl. Mater. Interface, 10, 14570-14576(2018).

    [22] X. Yao, X. Niu, K. Ma, P. Huang, J. Grothe, S. Kaskel. Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small, 13, 1602225(2017).

    [23] H. S. Jung, P. Verwilst, A. Sharma, J. Shin. Organic molecule-based photothermal agents: an expanding photothermal therapy universe. Chem. Soc. Rev., 47, 2280-2297(2018).

    [24] J. Tian, H. Zhu, J. Chen, X. Zheng, H. Duan, K. Pu, P. Chen. Cobalt phosphide double-shelled nanocages: broadband light-harvesting nanostructures for efficient photothermal therapy and self-powered photoelectrochemical biosensing. Small, 13, 1700798(2017).

    [25] C. Xu, F. H. F. Chen Valdovinos, D. Jiang, S. Goel, B. Yu. Bacteria-like mesoporous silica-coated gold nanorods for positron emission tomography and photoacoustic imaging-guided chemo-photothermal combined therapy. Biomaterials, 165, 56-65(2018).

    [26] S. Parida, C. Maiti, Y. Rajesh, K. K. Dey, I. Pal. Gold nanorod embedded reduction responsive block copolymer micelle-triggered drug delivery combined with photothermal ablation for targeted cancer therapy. Biochim. Biophys. Acta, 1861, 3039-3052(2017).

    [27] Q. Sun, Q. You, X. Pang, X. Tan, J. Wang, L. Liu, F. Guo. A photoresponsive and rod-shape nanocarrier: Single wavelength of light triggered photothermal and photodynamic therapy based on AuNRs-capped Ce6-doped mesoporous silica nanorods. Biomaterials, 122, 188-200(2017).

    [28] Z. Lu, F. Huang, R. Cao, L. Zhang, G. Tan, N. He. Long blood residence and large tumor uptake of ruthenium sulfide nanoclusters for highly efficient cancer photothermal therapy. Sci. Rep., 7, 41571(2017).

    [29] L. Wang, J. Cao, Y. Lu, X. Li, S. Xu, Q. Zhang, Z. Yang, M. Peng. In situ instant generation of an ultrabroadband near-infrared emission center in bismuth-doped borosilicate glasses via a femtosecond laser. Photon. Res., 7, 300-310(2019).

    [30] L. Li, Y. Lu, C. Jiang, Y. Zhu, X. Yang, X. Hu, Z. Lin, Y. Zhang, M. Peng, H. Xia, C. Mao. Actively targeted deep tissue imaging and photothermalchemo therapy of breast cancer by antibody functionalized drug-loaded X-ray-responsive bismuth sulfide@mesoporous silica core-shell nanoparticles. Adv. Funct. Mater., 28, 1704623(2018).

    [31] J. Zhang, J. Yu, Y. Zhang. Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett., 11, 4774-4779(2011).

    [32] Z. Xu, Y. Gao, S. Huang, J. Lin, J. Fang. A luminescent and mesoporous core-shell structured Gd2O3:Eu3+@nSiO2@mSiO2 nanocomposite as a drug carrier. Dalton Trans., 40, 4846-4854(2011).

    [33] B. Liu, C. Li, Z. Xie, Z. Hou, Z. Cheng, D. Jin, J. Lin. 808 nm photocontrolled UCL imaging guided chemo/photothermal synergistic therapy with single UCNPs-CuS@PAA nanocomposite. Dalton Trans., 45, 13061-13069(2016).

    [34] D. Zhu, M. Liu, X. Liu, Y. Liu, P. N. Prasad, M. T. Swihart. Au-Cu2-xSe heterogeneous nanocrystals for efficient photothermal heating for cancer therapy. J. Mater. Chem. B, 5, 4934-4942(2017).

    [35] M. B. Sigman, A. Ghezelbash, T. Hanrath, A. E. Saunders, F. Lee, B. A. Korgel. Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets. J. Am. Chem. Soc., 125, 16050-16057(2003).

    [36] H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, E. M. Goldys. Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix. ACS Appl. Mater. Interface, 8, 30312-30319(2016).

    [37] C. Joshi, A. Dwived, S. B. Rai. Structural morphology, upconversion luminescence and optical thermometric sensing behavior of Y2O3: Er3+/Yb3+ nano-crystalline phosphor. Spectrochim. Acta A, 129, 451-456(2014).

    [38] V. Lojpur, G. Nikolić, M. D. Dramićanin. Luminescence thermometry below room temperature via up-conversion emission of Y2O3: Yb3+, Er3+ nanophosphors. J. Appl. Phys., 115, 203106(2014).

    Zhiyu Zhang, Hao Suo, Xiaoqi Zhao, Chongfeng Guo. 808 nm laser triggered self-monitored photo-thermal therapeutic nano-system Y2O3: Nd3+/Yb3+/Er3+@SiO2@Cu2S[J]. Photonics Research, 2020, 8(1): 32
    Download Citation