• Chinese Optics Letters
  • Vol. 22, Issue 1, 011402 (2024)
Yuchen Xue, Ruisong Zhang, Zhengdong Dai, Zhongyu Wang, Huiying Xu, and Zhiping Cai*
Author Affiliations
  • Department of Electronic Engineering, School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, China
  • show less
    DOI: 10.3788/COL202422.011402 Cite this Article Set citation alerts
    Yuchen Xue, Ruisong Zhang, Zhengdong Dai, Zhongyu Wang, Huiying Xu, Zhiping Cai. Watt-level acousto-optically Q-switched Pr:YLF laser at 639 nm[J]. Chinese Optics Letters, 2024, 22(1): 011402 Copy Citation Text show less
    References

    [1] J.-A. Conchello, J. W. Lichtman. Optical sectioning microscopy. Nat. Methods, 2, 920(2005).

    [2] K. V. Chellappan, E. Erden, H. Urey. Laser-based displays: a review. Appl. Opt., 49, F79(2010).

    [3] P. M. Smowton, A. A. Belyanin, S. Kawanaka et al. USHIO 3.5 W red laser diode for projector light source. Proc. SPIE, 10939, 109391I(2019).

    [4] K. Yamamoto. Laser display technologies and their applications. Adv. Opt. Technol., 1, 483(2012).

    [5] P. Shein, C. M. Cilip, G. Quinto et al. Selective laser suture lysis with a compact, low-cost, red diode laser. 30th Annual International Conference of the IEEE Engineering in Medicine & Biology Society, 4358(2008).

    [6] G. Hu, C. Chen, Z. Chen. Free-space optical communication using visible light. J. Zhejiang Univ. Sci. A, 8, 186(2007).

    [7] U. Demirbas, I. Baali. Power and efficiency scaling of diode pumped Cr:LiSAF lasers: 770–1110 nm tuning range and frequency doubling to 387–463 nm. Opt. Lett., 40, 4615(2015).

    [8] S. Ji, S. Liu, X. Lin et al. Watt-level visible continuous-wave upconversion fiber lasers toward the “green gap” wavelengths of 535–553 nm. ACS Photonics, 8, 2311(2021).

    [9] Z. Y. Li, B. T. Zhang, J. F. Yang et al. Diode-pumped simultaneously Q-switched and mode-locked Nd:GdVO4/LBO red Laser. Laser Phys., 20, 761(2010).

    [10] H. Q. Zhou, X. L. Bi, S. Q. Zhu et al. Multi-wavelength passively Q-switched red lasers with Nd3+:YAG/YAG/V3+:YAG/YAG composite crystal. Opt. Quantum Electron., 50, 56(2018).

    [11] C. Kränkel, D.-T. Marzahl, F. Moglia et al. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers. Laser Photonics Rev., 10, 548(2016).

    [12] H. Tanaka, S. Kalusniak, M. Badtke et al. Visible solid-state lasers based on Pr3+ and Tb3+. Prog. Quantum Electron., 84, 100411(2022).

    [13] A. Richter, E. Heumann, E. Osiac et al. Diode pumping of a continuous wave Pr3+-doped LiYF4 laser. Opt. Lett., 29, 2638(2004).

    [14] X. Lin, M. Chen, Q. Feng et al. LD-pumped high-power CW Pr3+:YLF Laguerre–Gaussian lasers at 639 nm. Opt. Laser Technol., 142, 107273(2021).

    [15] M. R. H. Knowles, A. I. Bell, G. Rutherford et al. Applications of high-power visible and UV lasers in manufacturing. Proc. SPIE, 3888, 210(2000).

    [16] C. Wagner, N. Harned. Lithography gets extreme. Nat. Photonics, 4, 24(2010).

    [17] Y. Zhang, Y. Yang, L. Zhang et al. Watt-level continuous-wave and passively Q-switched red lasers pumped by a single blue laser diode. Chin. Opt. Lett., 17, 071402(2019).

    [18] Y. Cheng, H. Yang, B. Xu et al. Passive Q-switching of a diode-pumped Pr:LiYF4 visible laser using WS2 as saturable absorber. IEEE Photonics J., 8, 1501606(2016).

    [19] Q. Yang, Y. Cao, X. Liu et al. Passive Q-switching of Pr:LiYF4 visible laser using SnS2 as a saturable absorber. Opt. Laser Technol., 112, 183(2019).

    [20] R. Zhang, Y. Zhang, H. Yu et al. Broadband black phosphorus optical modulator in the spectral range from visible to mid-infrared. Adv. Opt. Mater., 3, 1787(2015).

    [21] S. Luo, X. Yan, B. Xu et al. Few-layer Bi2Se3-based passively Q-switched Pr:YLF visible lasers. Opt. Commun., 406, 61(2018).

    [22] S. Wang, Y. Zhang, J. Xing et al. Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers. Appl. Phys. Lett., 107, 161103(2015).

    [23] Q. Yang, F. Zhang, N. Zhang et al. Few-layer MXene Ti3C2Tx (T = F, O, or OH) saturable absorber for visible bulk laser. Opt. Mater. Express, 9, 1795(2019).

    [24] B. Xu, S. Luo, X. Yan et al. CdTe/CdS quantum dots: effective saturable absorber for visible lasers. IEEE J. Sel. Top. Quantum Electron., 23, 1900507(2017).

    [25] H. Tanaka, R. Kariyama, K. Iijima et al. Saturation of 640-nm absorption in Cr4+:YAG for an InGaN laser diode pumped passively Q-switched Pr3+:YLF laser. Opt. Express, 23, 19382(2015).

    [26] M. Demesh, D. T. Marzahl, A. Yasukevich et al. Passively Q-switched Pr:YLF laser with a Co2+:MgAl2O4 saturable absorber. Opt. Lett., 42, 4687(2017).

    [27] S. Fujita, H. Tanaka, F. Kannari. Intracavity second-harmonic pulse generation at 261 and 320 nm with a Pr3+:YLF laser Q-switched by a Co2+:MgAl2O4 spinel saturable absorber. Opt. Express, 27, 38134(2019).

    [28] J. Kojou, R. Abe, R. Kariyama et al. InGaN diode pumped actively Q-switched intracavity frequency doubling Pr:LiYF4 261 nm laser. Appl. Opt., 53, 2030(2014).

    [29] L. Jin, W. Dai, Y. Yu et al. Single longitudinal mode Q-switched operation of Pr:YLF laser with pre-lase and Fabry–Perot etalon technology. Opt. Laser Technol., 129, 106294(2020).

    [30] Z. Yang, S. Zaheer Ud Din, P. Wang et al. Blue LD-pumped electro-optically Q-switched Pr:YLF visible laser with kilowatt-level peak power. Opt. Laser Technol., 148, 107711(2022).

    [31] J. J. Degnan. Theory of the optimally coupled Q-switched laser. IEEE J. Quantum Electron., 25, 214(1989).

    Yuchen Xue, Ruisong Zhang, Zhengdong Dai, Zhongyu Wang, Huiying Xu, Zhiping Cai. Watt-level acousto-optically Q-switched Pr:YLF laser at 639 nm[J]. Chinese Optics Letters, 2024, 22(1): 011402
    Download Citation