• Chinese Journal of Lasers
  • Vol. 45, Issue 6, 0605004 (2018)
Yaowu Kuang1、2, Zhiping He1, Liyin Yuan1, Liang Zhang1, and Rong Shu、* *
Author Affiliations
  • 1 Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 2 University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/CJL201845.0605004 Cite this Article Set citation alerts
    Yaowu Kuang, Zhiping He, Liyin Yuan, Liang Zhang, Rong Shu. Design and Development of Beam Transmitting System with Far-Field Beam Divergence Angle of Micro-Radian Dimension[J]. Chinese Journal of Lasers, 2018, 45(6): 0605004 Copy Citation Text show less
    Layout of beam transmission model
    Fig. 1. Layout of beam transmission model
    Optical path model of communication beam transmitter at 810 nm
    Fig. 2. Optical path model of communication beam transmitter at 810 nm
    (a) Projection of off-axis transmitted beam on the pupil; (b) far-field beam pattern simulated by CODE V
    Fig. 3. (a) Projection of off-axis transmitted beam on the pupil; (b) far-field beam pattern simulated by CODE V
    Far-field divergence angle versus wave-front error influenced by different Zernike polynomials. (a) Z2-Z7; (b) Z8-Z11; (c) Z12-Z16
    Fig. 4. Far-field divergence angle versus wave-front error influenced by different Zernike polynomials. (a) Z2-Z7; (b) Z8-Z11; (c) Z12-Z16
    Statistical distribution of far-field divergence angle of communication laser beam
    Fig. 5. Statistical distribution of far-field divergence angle of communication laser beam
    Probability of far-field divergence angle under 10 μrad versus wave-front error
    Fig. 6. Probability of far-field divergence angle under 10 μrad versus wave-front error
    RMS wave-front errors of telescope under different temperatures. (a) 20.5 ℃; (b) 21.5 ℃; (c) 22.5 ℃
    Fig. 7. RMS wave-front errors of telescope under different temperatures. (a) 20.5 ℃; (b) 21.5 ℃; (c) 22.5 ℃
    Far-field divergence angle testing results of transmitted beam for integrated laser communication system under different temperatures. (a) 20.5 ℃; (b) 21.5 ℃; (c) 22.5 ℃
    Fig. 8. Far-field divergence angle testing results of transmitted beam for integrated laser communication system under different temperatures. (a) 20.5 ℃; (b) 21.5 ℃; (c) 22.5 ℃
    NumberZernike polynomialAberration type
    11Piston (constant)
    2ρcosθDistortion-tilt (x-axis)
    3ρsinθDistortion-tilt (y-axis)
    42ρ2-1Defocus-field curvature
    5ρ2cos(2θ)Astigmatism, primary (axis at 0° or 90°)
    6ρ2sin(2θ)Astigmatism, primary (axis at ±45°)
    7(3ρ3-2ρ)cosθComa, primary (x-axis)
    8(3ρ3-2ρ)sinθComa, primary (y-axis)
    96ρ4-6ρ2+1Spherical aberration, primary
    10ρ3cos(3θ)Trefoil, primary (x-axis)
    11ρ3sin(3θ)Trefoil, primary (y-axis)
    12(4ρ4-3ρ2)cos(2θ)Astigmatism, secondary (axis at 0° or 90°)
    13(4ρ4-3ρ2)sin(2θ)Astigmatism, secondary (axis at ±45°)
    14(10ρ5-12ρ3+3ρ)cosθComa, secondary (x-axis)
    15(10ρ5-12ρ3+3ρ)sinθComa, secondary (y-axis)
    1620ρ6-30ρ4+12ρ2-1Spherical aberration, secondary
    Table 1. Fringe Zernike polynomials
    Rnumber /mmw /mmαa /mmλ /nmf /nm
    15663.280.22592.4810810
    Table 2. Parameters of space laser communication system
    Yaowu Kuang, Zhiping He, Liyin Yuan, Liang Zhang, Rong Shu. Design and Development of Beam Transmitting System with Far-Field Beam Divergence Angle of Micro-Radian Dimension[J]. Chinese Journal of Lasers, 2018, 45(6): 0605004
    Download Citation