• Nano-Micro Letters
  • Vol. 16, Issue 1, 148 (2024)
Fujuan Wang1、2、†, Tianyun Zhang1、3、†,*, Tian Zhang3, Tianqi He1、2, and Fen Ran1、2、**
Author Affiliations
  • 1State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, People’s Republic of China
  • 2School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, People’s Republic of China
  • 3School of Mechanical and Electronical Engineering, Lanzhou University of Technology, Lanzhou 730050, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01351-2 Cite this Article
    Fujuan Wang, Tianyun Zhang, Tian Zhang, Tianqi He, Fen Ran. Recent Progress in Improving Rate Performance of Cellulose-Derived Carbon Materials for Sodium-Ion Batteries[J]. Nano-Micro Letters, 2024, 16(1): 148 Copy Citation Text show less
    References

    [1] S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    [2] T. He, X. Kang, F. Wang, J. Zhang, T. Zhang et al., Capacitive contribution matters in facilitating high power battery materials toward fast-charging alkali metal ion batteries. Mater. Sci. Eng. R. Rep. 154, 100737 (2023).

    [3] C. Zhao, Q. Wang, Z. Yao, J. Wang, B. Sánchez-Lengeling et al., Rational design of layered oxide materials for sodium-ion batteries. Science 370, 708–711 (2020).

    [4] B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

    [5] Y. Wan, Y. Liu, D. Chao, W. Li, D. Zhao, Recent advances in hard carbon anodes with high initial Coulombic efficiency for sodium-ion batteries. Nano Mater. Sci. 5, 189–201 (2023).

    [6] F. Song, J. Hu, G. Li, J. Wang, S. Chen et al., Room-temperature assembled MXene-based aerogels for high mass-loading sodium-ion storage. Nano Micro Lett. 14, 37 (2021).

    [7] M. Wang, Q. Wang, X. Ding, Y. Wang, Y. Xin et al., The prospect and challenges of sodium-ion batteries for low-temperature conditions. Interdiscip. Mater. 1, 373–395 (2022).

    [8] S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    [9] N. Sun, Z. Guan, Y. Liu, Y. Cao, Q. Zhu et al., Extended “adsorption–insertion” model: a new insight into the sodium storage mechanism of hard carbons. Adv. Energy Mater. 9, 1901351 (2019).

    [10] D. Saurel, B. Orayech, B. Xiao, D. Carriazo, X. Li et al., From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization. Adv. Energy Mater. 8, 1703268 (2018).

    [11] Y. Chu, J. Zhang, Y. Zhang, Q. Li, Y. Jia et al., Reconfiguring hard carbons with emerging sodium-ion batteries: a perspective. Adv. Mater. 35, e2212186 (2023).

    [12] A. Siddiqa, Z. Yhobu, D.H. Nagaraju, M. Padaki, S. Budagumpi et al., Review and perspectives of sustainable lignin, cellulose, and lignocellulosic carbon special structures for energy storage. Energy Fuels 37, 2498–2519 (2023).

    [13] X.-S. Wu, X.-L. Dong, B.-Y. Wang, J.-L. Xia, W.-C. Li, Revealing the sodium storage behavior of biomass-derived hard carbon by using pure lignin and cellulose as model precursors. Renew. Energy 189, 630–638 (2022).

    [14] H. Yang, B. Huan, Y. Chen, Y. Gao, J. Li et al., Biomass-based pyrolytic polygeneration system for bamboo industry waste: evolution of the char structure and the pyrolysis mechanism. Energy Fuels 30, 6430–6439 (2016).

    [15] D. Zhao, Y. Zhu, W. Cheng, W. Chen, Y. Wu et al., Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 33, e2000619 (2021).

    [16] H. Yamamoto, S. Muratsubaki, K. Kubota, M. Fukunishi, H. Watanabe et al., Synthesizing higher-capacity hard-carbons from cellulose for Na- and K-ion batteries. J. Mater. Chem. A 6, 16844–16848 (2018).

    [17] W. Tao, J. Chen, C. Xu, S. Liu, S. Fakudze et al., Nanostructured MoS2 with interlayer controllably regulated by ionic liquids/cellulose for high-capacity and durable sodium storage properties. Small 19, e2207397 (2023).

    [18] H. Seddiqi, E. Oliaei, H. Honarkar, J. Jin, L.C. Geonzon et al., Cellulose and its derivatives: towards biomedical applications. Cellulose 28, 1893–1931 (2021).

    [19] Y. Zhao, Y. Zhang, M.E. Lindström, J. Li, Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans. Carbohydr. Polym. 117, 286–296 (2015).

    [20] R.M. Brown Jr., J.H. Willison, C.L. Richardson, Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc. Natl. Acad. Sci. U.S.A. 73, 4565–4569 (1976).

    [21] L. Ma, Z. Bi, Y. Xue, W. Zhang, Q. Huang et al., Bacterial cellulose: an encouraging eco-friendly nano-candidate for energy storage and energy conversion. J. Mater. Chem. A 8, 5812–5842 (2020).

    [22] N.I. Tkacheva, S.V. Morozov, I.A. Grigor’ev, D.M. Mognonov, N.A. Kolchanov, Modification of cellulose as a promising direction in the design of new materials. Polym. Sci. Ser. B 55, 409–429 (2013).

    [23] J. Prachayawarakorn, S. Chaiwatyothin, S. Mueangta, A. Hanchana, Effect of jute and kapok fibers on properties of thermoplastic cassava starch composites. Mater. Des. 47, 309–315 (2013).

    [24] H. Krässig, J. Schurz, R.G. Steadman, K. Schliefer, W. Albrecht et al., Cellulose, in Ullmann’s Encyclopedia of Industrial Chemistry. (Wiley, USA, 2004), pp.11–95

    [25] B. Puangsin, H. Soeta, T. Saito, A. Isogai, Characterization of cellulose nanofibrils prepared by direct TEMPO-mediated oxidation of hemp bast. Cellulose 24, 3767–3775 (2017).

    [26] B.J.C. Duchemin, Structure, property and processing relationships of all-cellulose composites. PhD thesis, Université du Havre (2008). https://www.researchgate.net/publication/29488814

    [27] S. Rongpipi, D. Ye, E.D. Gomez, E.W. Gomez, Progress and opportunities in the characterization of cellulose—an important regulator of cell wall growth and mechanics. Front. Plant Sci. 9, 1894 (2019).

    [28] G. Zheng, Y. Cui, E. Karabulut, L. Wågberg, H. Zhu et al., Nanostructured paper for flexible energy and electronic devices. MRS Bull. 38, 320–325 (2013).

    [29] Y. Luo, J. Zhang, X. Li, C. Liao, X. Li, The cellulose nanofibers for optoelectronic conversion and energy storage. J. Nanomater. 2014, 654512 (2014).

    [30] T. Li, X. Zhang, S.D. Lacey, R. Mi, X. Zhao et al., Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nat. Mater. 18, 608–613 (2019).

    [31] A. Isogai, T. Saito, H. Fukuzumi, TEMPO-oxidized cellulose nanofibers. Nanoscale 3, 71–85 (2011).

    [32] H.-P. Fink, B. Philipp, D. Paul, R. Serimaa, T. Paakkari, The structure of amorphous cellulose as revealed by wide-angle X-ray scattering. Polymer 28, 1265–1270 (1987).

    [33] M. Wada, M. Ike, K. Tokuyasu, Enzymatic hydrolysis of cellulose I is greatly accelerated via its conversion to the cellulose II hydrate form. Polym. Degrad. Stab. 95, 543–548 (2010).

    [34] Q. Wu, J. Xu, Z. Wu, S. Zhu, Y. Gao et al., The effect of surface modification on chemical and crystalline structure of the cellulose III nanocrystals. Carbohydr. Polym. 235, 115962 (2020).

    [35] H. Zhang, Q. Li, K.J. Edgar, G. Yang, H. Shao, Structure and properties of flax vs. lyocell fiber-reinforced polylactide stereo complex composites. Cellulose 28, 9297–9308 (2021).

    [36] J. Sugiyama, R. Vuong, H. Chanzy, Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24, 4168–4175 (1991).

    [37] P. Langan, Y. Nishiyama, H. Chanzy, X-ray structure of mercerized cellulose II at 1 a resolution. Biomacromol 2, 410–416 (2001).

    [38] M. Wada, L. Heux, A. Isogai, Y. Nishiyama, H. Chanzy et al., Improved structural data of cellulose IIII prepared in supercritical ammonia. Macromolecules 34, 1237–1243 (2001).

    [39] P. Zugenmaier, Conformation and packing of various crystalline cellulose fibers. Prog. Polym. Sci. 26, 1341–1417 (2001).

    [40] T.L. Bluhm, A. Sarko, Packing analysis of carbohydrates and polysaccharides. V. Crystal structures of two polymorphs of pachyman triacetate. Biopolymers 16, 2067–2089 (1977).

    [41] M. Wada, L. Heux, J. Sugiyama, Polymorphism of cellulose I family: reinvestigation of cellulose IVI. Biomacromol 5, 1385–1391 (2004).

    [42] Y. Liu, H. Fu, W. Zhang, H. Liu, Effect of crystalline structure on the catalytic hydrolysis of cellulose in subcritical water. ACS Sustain. Chem. Eng. 10, 5859–5866 (2022).

    [43] J.C. Arthur, Chemical Modification of Cellulose and its Derivatives (Springer, 1989), pp.49–80

    [44] P. Trivedi, P. Fardim, Recent Advances in Cellulose Chemistry and Potential Applications, in Production of Materials from Sustainable Biomass Resources. (Springer, Singapore, 2019), pp.99–115

    [45] D.K. Shen, S. Gu, A.V. Bridgwater, The thermal performance of the polysaccharides extracted from hardwood: cellulose and hemicellulose. Carbohydr. Polym. 82, 39–45 (2010).

    [46] S. Yu, L. Wang, Q. Li, Y. Zhang, H. Zhou, Sustainable carbon materials from the pyrolysis of lignocellulosic biomass. Mater. Today Sustain. 19, 100209 (2022).

    [47] C. Mukarakate, A. Mittal, P.N. Ciesielski, S. Budhi, L. Thompson et al., Influence of crystal allomorph and crystallinity on the products and behavior of cellulose during fast pyrolysis. ACS Sustain. Chem. Eng. 4, 4662–4674 (2016).

    [48] J. Deng, T. Xiong, H. Wang, A. Zheng, Y. Wang, Effects of cellulose, hemicellulose, and lignin on the structure and morphology of porous carbons. ACS Sustain. Chem. Eng. 4, 3750–3756 (2016).

    [49] W.-J. Liu, H. Jiang, H.-Q. Yu, Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem. Rev. 115, 12251–12285 (2015).

    [50] B. Zhang, C.M. Ghimbeu, C. Laberty, C. Vix-Guterl, J.-M. Tarascon, Correlation between microstructure and Na storage behavior in hard carbon. Adv. Energy Mater. 6, 1501588 (2016).

    [51] V. Simone, A. Boulineau, A. de Geyer, D. Rouchon, L. Simonin et al., Hard carbon derived from cellulose as anode for sodium ion batteries: dependence of electrochemical properties on structure. J. Energy Chem. 25, 761–768 (2016).

    [52] Q. Lu, H.-Y. Tian, B. Hu, X.-Y. Jiang, C.-Q. Dong et al., Pyrolysis mechanism of holocellulose-based monosaccharides: the formation of hydroxyacetaldehyde. J. Anal. Appl. Pyrolysis 120, 15–26 (2016).

    [53] X. Zhang, W. Yang, C. Dong, Levoglucosan formation mechanisms during cellulose pyrolysis. J. Anal. Appl. Pyrolysis 104, 19–27 (2013).

    [54] H.B. Mayes, L.J. Broadbelt, Unraveling the reactions that unravel cellulose. J. Phys. Chem. A 116, 7098–7106 (2012).

    [55] X. Bai, P. Johnston, S. Sadula, R.C. Brown, Role of levoglucosan physiochemistry in cellulose pyrolysis. J. Anal. Appl. Pyrolysis 99, 58–65 (2013).

    [56] M.J. Antal, Biomass Pyrolysis: A Review of the Literature Part 2—Lignocellulose Pyrolysis, in Advances in Solar Energy. (Springer, Boston, 1985), pp.175–255

    [57] A.R. Teixeira, K.G. Mooney, J.S. Kruger, C.L. Williams, W.J. Suszynski et al., Aerosol generation by reactive boiling ejection of molten cellulose. Energy Environ. Sci. 4, 4306 (2011).

    [58] Z. Wang, A.G. McDonald, R.J.M. Westerhof, S.R.A. Kersten, C.M. Cuba-Torres et al., Effect of cellulose crystallinity on the formation of a liquid intermediate and on product distribution during pyrolysis. J. Anal. Appl. Pyrolysis 100, 56–66 (2013).

    [59] D. Liu, Y. Yu, H. Wu, Differences in water-soluble intermediates from slow pyrolysis of amorphous and crystalline cellulose. Energy Fuels 27, 1371–1380 (2013).

    [60] Z. Wang, B. Pecha, R.J.M. Westerhof, S.R.A. Kersten, C.-Z. Li et al., Effect of cellulose crystallinity on solid/liquid phase reactions responsible for the formation of carbonaceous residues during pyrolysis. Ind. Eng. Chem. Res. 53, 2940–2955 (2014).

    [61] M. Zhang, Z. Geng, Y. Yu, Density functional theory (DFT) study on the dehydration of cellulose. Energy Fuels 25, 2664–2670 (2011).

    [62] D. Alvira, D. Antorán, J.J. Manyà, Plant-derived hard carbon as anode for sodium-ion batteries: a comprehensive review to guide interdisciplinary research. Chem. Eng. J. 447, 137468 (2022).

    [63] Q. Jin, W. Li, K. Wang, P. Feng, H. Li et al., Experimental design and theoretical calculation for sulfur-doped carbon nanofibers as a high performance sodium-ion battery anode. J. Mater. Chem. A 7, 10239–10245 (2019).

    [64] L. Li, L. Hou, J. Cheng, T. Simmons, F. Zhang et al., A flexible carbon/sulfur-cellulose core-shell structure for advanced lithium–sulfur batteries. Energy Storage Mater. 15, 388–395 (2018).

    [65] W. Lei, D. Jin, H. Liu, Z. Tong, H. Zhang, An overview of bacterial cellulose in flexible electrochemical energy storage. Chemsuschem 13, 3731–3753 (2020).

    [66] D. Xu, C. Chen, J. Xie, B. Zhang, L. Miao et al., A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv. Energy Mater. 6, 1501929 (2016).

    [67] H. Jia, N. Sun, M. Dirican, Y. Li, C. Chen et al., Electrospun kraft lignin/cellulose acetate-derived nanocarbon network as an anode for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 10, 44368–44375 (2018).

    [68] W. Zhang, B. Liu, M. Yang, Y. Liu, H. Li et al., Biowaste derived porous carbon sponge for high performance supercapacitors. J. Mater. Sci. Technol. 95, 105–113 (2021).

    [69] B. Yan, L. Feng, J. Zheng, Q. Zhang, Y. Dong et al., Nitrogen-doped carbon layer on cellulose derived free-standing carbon paper for high-rate supercapacitors. Appl. Surf. Sci. 608, 155144 (2023).

    [70] H. Wang, F. Sun, Z. Qu, K. Wang, L. Wang et al., Oxygen functional group modification of cellulose-derived hard carbon for enhanced sodium ion storage. ACS Sustain. Chem. Eng. 7, 18554–18565 (2019).

    [71] J.J. Manyà, Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ. Sci. Technol. 46, 7939–7954 (2012).

    [72] H. Zhu, F. Shen, W. Luo, S. Zhb, M. Zhao et al., Low temperature carbonization of cellulose nanocrystals for high performance carbon anode of sodium-ion batteries. Nano Energy 33, 37–44 (2017).

    [73] X. Liu, T. Wang, T. Zhang, Z. Sun, T. Ji et al., Solvated sodium storage via a coadsorptive mechanism in microcrystalline graphite fiber. Adv. Energy Mater. 12, 2202388 (2022).

    [74] J. Jiang, J. Zhu, W. Ai, Z. Fan, X. Shen et al., Evolution of disposable bamboo chopsticks into uniform carbon fibers: a smart strategy to fabricate sustainable anodes for Li-ion batteries. Energy Environ. Sci. 7, 2670–2679 (2014).

    [75] T. Zhang, L. Yang, X. Yan, X. Ding, Recent advances of cellulose-based materials and their promising application in sodium-ion batteries and capacitors. Small 14, e1802444 (2018).

    [76] F. Wang, X. Shi, J. Zhang, T. He, L. Yang et al., Bacterial cellulose-derived micro/mesoporous carbon anode materials controlled by poly(methyl methacrylate for fast sodium ion transport. Nanoscale 14, 3609–3617 (2022).

    [77] V. Agarwal, G.W. Huber, W.C. Conner Jr., S.M. Auerbach, Simulating infrared spectra and hydrogen bonding in cellulose Iβ at elevated temperatures. J. Chem. Phys. 135, 134506 (2011).

    [78] L. Xie, G. Sun, F. Su, X. Guo, Q. Kong et al., Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications. J. Mater. Chem. A 4(5), 1637–1646 (2016).

    [79] Z.-E. Yu, Y. Lyu, Y. Wang, S. Xu, H. Cheng et al., Hard carbon micro-nano tubes derived from kapok fiber as anode materials for sodium-ion batteries and the sodium-ion storage mechanism. Chem. Commun. 56, 778–781 (2020).

    [80] C. Yang, J. Xiong, X. Ou, C.-F. Wu, X. Xiong et al., A renewable natural cotton derived and nitrogen/sulfur Co-doped carbon as a high-performance sodium ion battery anode. Mater. Today Energy 8, 37–44 (2018).

    [81] Y. Li, Y.-S. Hu, M.-M. Titirici, L. Chen, X. Huang, Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 6, 1600659 (2016).

    [82] F. Wang, T. Zhang, F. Ran, Insights into sodium-ion batteries through plateau and slope regions in cyclic voltammetry by tailoring bacterial cellulose precursors. Electrochim. Acta 441, 141770 (2023).

    [83] X. Yu, L. Xin, X. Li, Z. Wu, Y. Liu, Completely crystalline carbon containing graphite-like crystal enables 99.5% initial coulombic efficiency for Na-ion batteries. Mater. Today 59, 25–35 (2022).

    [84] X. Yin, Z. Lu, J. Wang, X. Feng, S. Roy et al., Enabling fast Na+ transfer kinetics in the whole-voltage-region of hard-carbon anodes for ultrahigh-rate sodium storage. Adv. Mater. 34, e2109282 (2022).

    [85] X. Han, S. Zhou, H. Liu, H. Leng, S. Li et al., Noncrystalline carbon anodes for advanced sodium-ion storage. Small Methods 7, e2201508 (2023).

    [86] A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power. Sources 157, 11–27 (2006).

    [87] L. Yang, M. Hu, Q. Lv, H. Zhang, W. Yang et al., Salt and sugar derived high power carbon microspheres anode with excellent low-potential capacity. Carbon 163, 288–296 (2020).

    [88] W. Li, J. Huang, L. Feng, L. Cao, Y. Ren et al., Controlled synthesis of macroscopic three-dimensional hollow reticulate hard carbon as long-life anode materials for Na-ion batteries. J. Alloys Compd. 716, 210–219 (2017).

    [89] H. Yang, R. Xu, Y. Yu, A facile strategy toward sodium-ion batteries with ultra-long cycle life and high initial Coulombic Efficiency: free-standing porous carbon nanofiber film derived from bacterial cellulose. Energy Storage Mater. 22, 105–112 (2019).

    [90] Z. Tang, R. Zhang, H. Wang, S. Zhou, Z. Pan et al., Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery. Nat. Commun. 14, 6024 (2023).

    [91] Y. Zhao, Z. Hu, C. Fan, P. Gao, R. Zhang et al., Novel structural design and adsorption/insertion coordinating quasi-metallic Na storage mechanism toward high-performance hard carbon anode derived from carboxymethyl cellulose. Small 19, e2303296 (2023).

    [92] Y. He, P. Bai, S. Gao, Y. Xu, Marriage of an ether-based electrolyte with hard carbon anodes creates superior sodium-ion batteries with high mass loading. ACS Appl. Mater. Interfaces 10, 41380–41388 (2018).

    [93] R. Tian, S.-H. Park, P.J. King, G. Cunningham, J. Coelho et al., Quantifying the factors limiting rate performance in battery electrodes. Nat. Commun. 10, 1933 (2019).

    [94] R. Tian, M. Breshears, D.V. Horvath, J.N. Coleman, The rate performance of two-dimensional material-based battery electrodes may not be as good as commonly believed. ACS Nano 14, 3129–3140 (2020).

    [95] L.L. Wong, H. Chen, S. Adams, Design of fast ion conducting cathode materials for grid-scale sodium-ion batteries. Phys. Chem. Chem. Phys. 19, 7506–7523 (2017).

    [96] C. Heubner, J. Seeba, T. Liebmann, A. Nickol, S. Börner et al., Semi-empirical master curve concept describing the rate capability of lithium insertion electrodes. J. Power. Sources 380, 83–91 (2018).

    [97] D.V. Horváth, J. Coelho, R. Tian, V. Nicolosi, J.N. Coleman, Quantifying the dependence of battery rate performance on electrode thickness. ACS Appl. Energy Mater. 3, 10154–10163 (2020).

    [98] S. Alvin, D. Yoon, C. Chandra, R.F. Susanti, W. Chang et al., Extended flat voltage profile of hard carbon synthesized using a two-step carbonization approach as an anode in sodium ion batteries. J. Power. Sources 430, 157–168 (2019).

    [99] D.A. Stevens, J.R. Dahn, High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 147, 1271 (2000).

    [100] Y. Cao, L. Xiao, M.L. Sushko, W. Wang, B. Schwenzer et al., Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 12, 3783–3787 (2012).

    [101] C. Bommier, T.W. Surta, M. Dolgos, X. Ji, New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett. 15, 5888–5892 (2015).

    [102] S. Alvin, D. Yoon, C. Chandra, H.S. Cahyadi, J.-H. Park et al., Revealing sodium ion storage mechanism in hard carbon. Carbon 145, 67–81 (2019).

    [103] X. Dou, I. Hasa, D. Saurel, C. Vaalma, L. Wu et al., Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry. Mater. Today 23, 87–104 (2019).

    [104] T.-C. Liu, W.G. Pell, B.E. Conway, S.L. Roberson, Behavior of molybdenum nitrides as materials for electrochemical capacitors: comparison with ruthenium oxide. J. Electrochem. Soc. 145, 1882–1888 (1998).

    [105] B.E. Conway, W.G. Pell, Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J. Solid State Electrochem. 7, 637–644 (2003).

    [106] J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase nanoparticles. J. Phys. Chem. C 111, 14925–14931 (2007).

    [107] H. Lu, F. Ai, Y. Jia, C. Tang, X. Zhang et al., Exploring sodium-ion storage mechanism in hard carbons with different microstructure prepared by ball-milling method. Small 14, e1802694 (2018).

    [108] Z. Lu, J. Wang, W. Feng, X. Yin, X. Feng et al., Zinc single-atom-regulated hard carbons for high-rate and low-temperature sodium-ion batteries. Adv. Mater. 35, e2211461 (2023).

    [109] M. Anji Reddy, M. Helen, A. Groß, M. Fichtner, H. Euchner, Insight into sodium insertion and the storage mechanism in hard carbon. ACS Energy Lett. 3, 2851–2857 (2018).

    [110] Y. Youn, B. Gao, A. Kamiyama, K. Kubota, S. Komaba et al., Nanometer-size Na cluster formation in micropore of hard carbon as origin of higher-capacity Na-ion battery. NPJ Comput. Mater. 7, 48 (2021).

    [111] P. Wang, K. Zhu, K. Ye, Z. Gong, R. Liu et al., Three-dimensional biomass derived hard carbon with reconstructed surface as a free-standing anode for sodium-ion batteries. J. Colloid Interface Sci. 561, 203–210 (2020).

    [112] Y. Chen, F. Li, Z. Guo, Z. Song, Y. Lin et al., Sustainable and scalable fabrication of high-performance hard carbon anode for Na-ion battery. J. Power. Sources 557, 232534 (2023).

    [113] S. Zhou, Z. Tang, Z. Pan, Y. Huang, L. Zhao et al., Regulating closed pore structure enables significantly improved sodium storage for hard carbon pyrolyzing at relatively low temperature. SusMat 2, 357–367 (2022).

    [114] J.-L. Xia, D. Yan, L.-P. Guo, X.-L. Dong, W.-C. Li et al., Hard carbon nanosheets with uniform ultramicropores and accessible functional groups showing high realistic capacity and superior rate performance for sodium-ion storage. Adv. Mater. 32, e2000447 (2020).

    [115] H. Au, H. Alptekin, A.C.S. Jensen, E. Olsson, C.A. O’Keefe et al., A revised mechanistic model for sodium insertion in hard carbons. Energy Environ. Sci. 13, 3469–3479 (2020).

    [116] Y. Morikawa, S.-I. Nishimura, R.-I. Hashimoto, M. Ohnuma, A. Yamada, Mechanism of sodium storage in hard carbon: an X-ray scattering analysis. Adv. Energy Mater. 10, 1903176 (2020).

    [117] V. Surendran, R.K. Hema, M.S.O. Hassan, V. Vijayan, M.M. Shaijumon, Open or closed? Elucidating the correlation between micropore nature and sodium storage mechanisms in hard carbon. Batter. Supercaps 5, 2200316 (2022).

    [118] T.G.T.A. Bandara, J.C. Viera, M. González, The next generation of fast charging methods for Lithium-ion batteries: the natural current-absorption methods. Renew. Sustain. Energy Rev. 162, 112338 (2022).

    [119] C. Heubner, M. Schneider, A. Michaelis, Investigation of charge transfer kinetics of Li-intercalation in LiFePO4. J. Power. Sources 288, 115–120 (2015).

    [120] T. Zhang, F. Ran, Design strategies of 3D carbon-based electrodes for charge/ion transport in lithium ion battery and sodium ion battery. Adv. Funct. Mater. 31, 2010041 (2021).

    [121] D.R. Rolison, J.W. Long, J.C. Lytle, A.E. Fischer, C.P. Rhodes et al., Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem. Soc. Rev. 38, 226–252 (2009).

    [122] K. Yu, X. Wang, H. Yang, Y. Bai, C. Wu, Insight to defects regulation on sugarcane waste-derived hard carbon anode for sodium-ion batteries. J. Energy Chem. 55, 499–508 (2021).

    [123] T. Lyu, X. Lan, L. Liang, X. Lin, C. Hao et al., Natural mushroom spores derived hard carbon plates for robust and low-potential sodium ion storage. Electrochim. Acta 365, 137356 (2021).

    [124] B. Yin, S. Liang, D. Yu, B. Cheng, I.L. Egun et al., Increasing accessible subsurface to improving rate capability and cycling stability of sodium-ion batteries. Adv. Mater. 33, e2100808 (2021).

    [125] X. Yin, Y. Zhao, X. Wang, X. Feng, Z. Lu et al., Modulating the graphitic domains of hard carbons derived from mixed pitch and resin to achieve high rate and stable sodium storage. Small 18, e2105568 (2022).

    [126] M.E. Lee, H.W. Kwak, H.-J. Jin, Y.S. Yun, Waste beverage coffee-induced hard carbon granules for sodium-ion batteries. ACS Sustain. Chem. Eng. 7, 12734–12740 (2019).

    [127] F. Sun, H. Wang, Z. Qu, K. Wang, L. Wang et al., Carboxyl-dominant oxygen rich carbon for improved sodium ion storage: synergistic enhancement of adsorption and intercalation mechanisms. Adv. Energy Mater. 11, 2002981 (2021).

    [128] K. Kang, Y.S. Meng, J. Bréger, C.P. Grey, G. Ceder, Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977–980 (2006).

    [129] B. Marinho, M. Ghislandi, E. Tkalya, C.E. Koning, G. de With, Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technol. 221, 351–358 (2012).

    [130] S.-M. Zheng, Y.-R. Tian, Y.-X. Liu, S. Wang, C.-Q. Hu et al., Alloy anodes for sodium-ion batteries. Rare Met. 40, 272–289 (2021).

    [131] K. Cui, C. Wang, Y. Luo, L. Li, J. Gao et al., Enhanced sodium storage kinetics of nitrogen rich cellulose-derived hierarchical porous carbon via subsequent boron doping. Appl. Surf. Sci. 531, 147302 (2020).

    [132] J. Wang, Z. Xu, J.-C. Eloi, M.-M. Titirici, S.J. Eichhorn, Ice-templated, sustainable carbon aerogels with hierarchically tailored channels for sodium- and potassium-ion batteries. Adv. Funct. Mater. 32, 2110862 (2022).

    [133] T. Zhang, J. Chen, B. Yang, H. Li, S. Lei et al., Enhanced capacities of carbon nanosheets derived from functionalized bacterial cellulose as anodes for sodium ion batteries. RSC Adv. 7, 50336–50342 (2017).

    [134] F. Xie, Z. Xu, A.C.S. Jensen, H. Au, Y. Lu et al., Hard–soft carbon composite anodes with synergistic sodium storage performance. Adv. Funct. Mater. 29, 1901072 (2019).

    [135] Q. Shi, D. Liu, Y. Wang, Y. Zhao, X. Yang et al., High-performance sodium-ion battery anode via rapid microwave carbonization of natural cellulose nanofibers with graphene initiator. Small 15, e1901724 (2019).

    [136] C.-C. Wang, W.-L. Su, Understanding acid pretreatment of lotus leaves to prepare hard carbons as anodes for sodium ion batteries. Surf. Coat. Technol. 415, 127125 (2021).

    [137] K. Kierzek, J. Machnikowski, Cellulose-derived carbons as a high performance anodic material for Na-ion battery. Ionics 24, 1313–1320 (2018).

    [138] Z. Xu, Y. Huang, L. Ding, J. Huang, H. Gao et al., Highly stable basswood porous carbon anode activated by phosphoric acid for a sodium ion battery. Energy Fuels 34, 11565–11573 (2020).

    [139] Y. Li, J. Hu, Z. Wang, K. Yang, W. Huang et al., Low-temperature catalytic graphitization to enhance Na-ion transportation in carbon electrodes. ACS Appl. Mater. Interfaces 11, 24164–24171 (2019).

    [140] Z. Li, Z. Jian, X. Wang, I.A. Rodríguez-Pérez, C. Bommier et al., Hard carbon anodes of sodium-ion batteries: undervalued rate capability. Chem. Commun. 53, 2610–2613 (2017).

    [141] J. Borowec, V. Selmert, A. Kretzschmar, K. Fries, R. Schierholz et al., Carbonization-temperature-dependent electrical properties of carbon nanofibers-from nanoscale to macroscale. Adv. Mater. 35, e2300936 (2023).

    [142] C. Heubner, K. Nikolowski, S. Reuber, M. Schneider, M. Wolter et al., Recent insights into rate performance limitations of Li-ion batteries. Batter. Supercaps 4(2), 268–285 (2021).

    [143] J.-S. Lee, K. Otake, S. Kitagawa, Transport properties in porous coordination polymers. Coord. Chem. Rev. 421, 213447–213458 (2020).

    [144] S. Li, K. Wang, G. Zhang, S. Li, Y. Xu et al., Fast charging anode materials for lithium-ion batteries: current status and perspectives. Adv. Funct. Mater. 32, 2200796 (2022).

    [145] F. Yao, D.T. Pham, Y.H. Lee, Carbon-based materials for lithium-ion batteries, electrochemical capacitors, and their hybrid devices. Chemsuschem 8, 2284–2311 (2015).

    [146] H.-W. Liang, Q.-F. Guan, Z. Zhu, L.-T. Song, H.-B. Yao et al., Highly conductive and stretchable conductors fabricated from bacterial cellulose. NPG Asia Mater. 4, e19 (2012).

    [147] H. Kim, J.-Y. Yi, B.-G. Kim, J.E. Song, H.-J. Jeong et al., Development of cellulose-based conductive fabrics with electrical conductivity and flexibility. PLoS ONE 15, e0233952 (2020).

    [148] W. Weppner, R.A. Huggins, Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J. Electrochem. Soc. 124, 1569–1578 (1977).

    [149] Y. Chen, Z. Zhang, Y. Lai, X. Shi, J. Li et al., Self-assembly of 3D neat porous carbon aerogels with NaCl as template and flux for sodium-ion batteries. J. Power. Sources 359, 529–538 (2017).

    [150] L. Wang, J. Zhao, X. He, J. Gao, J. Li et al., Electrochemical impedance spectroscopy (EIS) study of LiNi1/3Co1/3Mn1/3O2 for Li-ion batteries. Int. J. Electrochem. Sci. 7, 345–353 (2012).

    [151] M. Sotoudeh, S. Baumgart, M. Dillenz, J. Döhn, K. Forster-Tonigold et al., Ion mobility in crystalline battery materials. Adv. Energy Mater. (2023).

    [152] R. Jain, A.S. Lakhnot, K. Bhimani, S. Sharma, V. Mahajani et al., Nanostructuring versus microstructuring in battery electrodes. Nat. Rev. Mater. 7, 736–746 (2022).

    [153] W. Shao, Q. Cao, S. Liu, T. Zhang, Z. Song et al., Replacing “Alkyl” with “Aryl” for inducing accessible channels to closed pores as plateau-dominated sodium-ion battery anode. SusMat 2, 319–334 (2022).

    [154] S.N. Lauro, J.N. Burrow, C.B. Mullins, Restructuring the lithium-ion battery: a perspective on electrode architectures. Science 3, 100152 (2023).

    [155] H. Sun, J. Zhu, D. Baumann, L. Peng, Y. Xu et al., Hierarchical 3D electrodes for electrochemical energy storage. Nat. Rev. Mater. 4, 45–60 (2019).

    [156] X. Ding, Y. Xin, Y. Wang, M. Wang, T. Song et al., Artificial solid electrolyte interphase engineering toward dendrite-free lithium anodes. ACS Sustain. Chem. Eng. 11, 6879–6889 (2023).

    [157] M. Yang, L. Chen, H. Li, F. Wu, Air/water stability problems and solutions for lithium batteries. Energy Mater. Adv. 2022, 9842651 (2022).

    [158] C. Bommier, X. Ji, Electrolytes, SEI formation, and binders: a review of nonelectrode factors for sodium-ion battery anodes. Small 14, e1703576 (2018).

    [159] J. Tan, J. Matz, P. Dong, J. Shen, M. Ye, A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11(16), 2100046 (2021).

    [160] Y. Li, F. Wu, Y. Li, M. Liu, X. Feng et al., Ether-based electrolytes for sodium ion batteries. Chem. Soc. Rev. 51, 4484–4536 (2022).

    [161] Q. Wang, J. Li, H. Jin, S. Xin, H. Gao, Prussian-blue materials: revealing new opportunities for rechargeable batteries. InfoMat 4, e12311 (2022).

    [162] J.B. Goodenough, H. Gao, A perspective on the Li-ion battery. Sci. China Chem. 62, 1555–1556 (2019).

    [163] Q. Wang, X. Ding, J. Li, H. Jin, H. Gao, Minimizing the interfacial resistance for a solid-state lithium battery running at room temperature. Chem. Eng. J. 448, 137740 (2022).

    [164] J. Zhang, D.-W. Wang, W. Lv, S. Zhang, Q. Liang et al., Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy Environ. Sci. 10, 370–376 (2017).

    [165] L. Zhao, F. Ran, Electrolyte-philicity of electrode materials. Chem. Commun. 59, 6969–6986 (2023).

    [166] A. Karatrantos, Q. Cai, Effects of pore size and surface charge on Na ion storage in carbon nanopores. Phys. Chem. Chem. Phys. 18, 30761–30769 (2016).

    [167] N. Ortiz Vitoriano, I. Ruiz de Larramendi, R.L. Sacci, I. Lozano, C.A. Bridges et al., Goldilocks and the three glymes: how Na+ solvation controls Na–O2 battery cycling. Energy Storage Mater. 29, 235–245 (2020).

    [168] E. Wang, Y. Niu, Y.-X. Yin, Y.-G. Guo, Manipulating electrode/electrolyte interphases of sodium-ion batteries: strategies and perspectives. ACS Mater. Lett. 3, 18–41 (2021).

    [169] L. Zhao, Y. Peng, F. Ran, Constructing mutual-philic electrode/non-liquid electrolyte interfaces in electrochemical energy storage systems: reasons, progress, and perspectives. Energy Storage Mater. 58, 48–73 (2023).

    [170] L. Zhao, Y. Li, M. Yu, Y. Peng, F. Ran, Electrolyte-wettability issues and challenges of electrode materials in electrochemical energy storage, energy conversion, and beyond. Adv. Sci. 10, e2300283 (2023).

    [171] M. Liu, F. Wu, Y. Gong, Y. Li, Y. Li et al., Interfacial-catalysis-enabled layered and inorganic-rich SEI on hard carbon anodes in ester electrolytes for sodium-ion batteries. Adv. Mater. 35, e2300002 (2023).

    [172] Z. Wang, H. Yang, Y. Liu, Y. Bai, G. Chen et al., Analysis of the stable interphase responsible for the excellent electrochemical performance of graphite electrodes in sodium-ion batteries. Small 16, e2003268 (2020).

    [173] M.E. Lee, S.M. Lee, J. Choi, D. Jang, S. Lee et al., Electrolyte-dependent sodium ion transport behaviors in hard carbon anode. Small 16, e2001053 (2020).

    [174] Y. Meng, C.I. Contescu, P. Liu, S. Wang, S.-H. Lee et al., Understanding the local structure of disordered carbons from cellulose and lignin. Wood Sci. Technol. 55, 587–606 (2021).

    [175] L. Fan, X. Li, Recent advances in effective protection of sodium metal anode. Nano Energy 53, 630–642 (2018).

    [176] Q. Li, J. Zhang, L. Zhong, F. Geng, Y. Tao et al., Unraveling the key atomic interactions in determining the varying Li/Na/K storage mechanism of hard carbon anodes. Adv. Energy Mater. 12, 2201734 (2022).

    [177] T. Zhang, T. Zhang, F. Wang, F. Ran, Pretreatment process before heat pyrolysis of plant-based precursors paving way for fabricating high-performance hard carbon for sodium-ion batteries. ChemElectroChem 10, 2300442 (2023).

    [178] A. Gopalakrishnan, S. Badhulika, Effect of self-doped heteroatoms on the performance of biomass-derived carbon for supercapacitor applications. J. Power. Sources 480, 228830 (2020).

    [179] X. Feng, Y. Bai, M. Liu, Y. Li, H. Yang et al., Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energy Environ. Sci. 14, 2036–2089 (2021).

    [180] H. Wang, E. Zhu, J. Yang, P. Zhou, D. Sun et al., Bacterial cellulose nanofiber-supported polyaniline nanocomposites with flake-shaped morphology as supercapacitor electrodes. J. Phys. Chem. C 116, 13013–13019 (2012).

    [181] Y. Zhang, L. Tao, C. Xie, D. Wang, Y. Zou et al., Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 32, e1905923 (2020).

    [182] M. Wang, H. Wu, S. Xu, P. Dong, A. Long et al., Cellulose nanocrystal regulated ultra-loose, lightweight, and hierarchical porous reduced graphene oxide hybrid aerogel for capturing and determining organic pollutants from water. Carbon 204, 94–101 (2023).

    [183] Z. Li, C. Bommier, Z.S. Chong, Z. Jian, T.W. Surta et al., Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping. Adv. Energy Mater. 7, 1602894 (2017).

    [184] L. Li, Q. Wang, X. Zhang, L. Fang, X. Li et al., Unique three-dimensional Co3O4@N-CNFs derived from ZIFs and bacterial cellulose as advanced anode for sodium-ion batteries. Appl. Surf. Sci. 508, 145295 (2020).

    [185] L. Shi, Y. Li, F. Zeng, S. Ran, C. Dong et al., In situ growth of amorphous Fe2O3 on 3D interconnected nitrogen-doped carbon nanofibers as high-performance anode materials for sodium-ion batteries. Chem. Eng. J. 356, 107–116 (2019).

    [186] H. Tao, L. Xiong, S. Du, Y. Zhang, X. Yang et al., Interwoven N and P dual-doped hollow carbon fibers/graphitic carbon nitride: an ultrahigh capacity and rate anode for Li and Na ion batteries. Carbon 122, 54–63 (2017).

    [187] H.-M. Wang, H.-X. Wang, Y. Chen, Y.-J. Liu, J.-X. Zhao et al., Phosphorus-doped graphene and (8, 0) carbon nanotube: structural, electronic, magnetic properties, and chemical reactivity. Appl. Surf. Sci. 273, 302–309 (2013).

    [188] K.C. Wasalathilake, G.A. Ayoko, C. Yan, Effects of heteroatom doping on the performance of graphene in sodium-ion batteries: a density functional theory investigation. Carbon 140, 276–285 (2018).

    [189] P.A. Denis, Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur. Chem. Phys. Lett. 492, 251–257 (2010).

    [190] A.K. Thakur, K. Kurtyka, M. Majumder, X. Yang, H.Q. Ta et al., Recent advances in boron- and nitrogen-doped carbon-based materials and their various applications. Adv. Mater. Interfaces 9, 2101964 (2022).

    [191] Y. Li, M. Chen, B. Liu, Y. Zhang, X. Liang et al., Heteroatom doping: an effective way to boost sodium ion storage. Adv. Energy Mater. 10, 2000927 (2020).

    [192] D. Wu, F. Sun, Z. Qu, H. Wang, Z. Lou et al., Multi-scale structure optimization of boron-doped hard carbon nanospheres boosting the plateau capacity for high performance sodium ion batteries. J. Mater. Chem. A 10, 17225–17236 (2022).

    [193] P. Wang, B. Qiao, Y. Du, Y. Li, X. Zhou et al., Fluorine-doped carbon particles derived from Lotus petioles as high-performance anode materials for sodium-ion batteries. J. Phys. Chem. C 119, 21336–21344 (2015).

    [194] Z. Liu, L. Yue, C. Wang, D. Li, L. Tang et al., Free-standing carbon nanofiber composite networks derived from bacterial cellulose and polypyrrole for ultrastable potassium-ion batteries. ACS Appl. Mater. Interfaces 15(11), 14865–14873 (2023).

    [195] X.-X. He, J.-H. Zhao, W.-H. Lai, R. Li, Z. Yang et al., Soft-carbon-coated, free-standing, low-defect, hard-carbon anode to achieve a 94% initial coulombic efficiency for sodium-ion batteries. ACS Appl. Mater. Interfaces 13, 44358–44368 (2021).

    [196] C. Yang, Q. Wu, W. Xie, X. Zhang, A. Brozena et al., Copper-coordinated cellulose ion conductors for solid-state batteries. Nature 598, 590–596 (2021).

    [197] A. Farooq, M.K. Patoary, M. Zhang, H. Mussana, M. Li et al., Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/zinc oxide nanocomposite materials. Int. J. Biol. Macromol. 154, 1050–1073 (2020).

    [198] Z. Lu, B. Wang, Y. Hu, W. Liu, Y. Zhao et al., An isolated zinc–cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem. Int. Ed. 58, 2622–2626 (2019).

    [199] X. Yao, Y. Ke, W. Ren, X. Wang, F. Xiong et al., Defect-rich soft carbon porous nanosheets for fast and high-capacity sodium-ion storage. Adv. Energy Mater. 9(6), 1803260 (2018).

    [200] G. Qiu, M. Ning, M. Zhang, J. Hu, Z. Duan et al., Flexible hard–soft carbon heterostructure based on mesopore confined carbonization for ultrafast and highly durable sodium storage. Carbon 205, 310–320 (2023).

    [201] D.-C. Wang, H.-Y. Yu, D. Qi, Y. Wu, L. Chen et al., Confined chemical transitions for direct extraction of conductive cellulose nanofibers with graphitized carbon shell at low temperature and pressure. J. Am. Chem. Soc. 143, 11620–11630 (2021).

    [202] H. Wang, Y. Shao, S. Mei, Y. Lu, M. Zhang et al., Polymer-derived heteroatom-doped porous carbon materials. Chem. Rev. 120, 9363–9419 (2020).

    [203] A. Dobashi, J. Maruyama, Y. Shen, M. Nandi, H. Uyama, Activated carbon monoliths derived from bacterial cellulose/polyacrylonitrile composite as new generation electrode materials in EDLC. Carbohydr. Polym. 200, 381–390 (2018).

    [204] Q. Bai, Q. Xiong, C. Li, Y. Shen, H. Uyama, Hierarchical porous carbons from poly(methyl methacrylate/bacterial cellulose composite monolith for high-performance supercapacitor electrodes. ACS Sustain. Chem. Eng. 5, 9390–9401 (2017).

    [205] F. Shen, W. Luo, J. Dai, Y. Yao, M. Zhu et al., Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Adv. Energy Mater. 6, 1600377 (2016).

    [206] H. Zhao, J. Ye, W. Song, D. Zhao, M. Kang et al., Insights into the surface oxygen functional group-driven fast and stable sodium adsorption on carbon. ACS Appl. Mater. Interfaces 12, 6991–7000 (2020).

    [207] R. Guo, C. Lv, W. Xu, J. Sun, Y. Zhu et al., Effect of intrinsic defects of carbon materials on the sodium storage performance. Adv. Energy Mater. 10, 1903652 (2020).

    [208] L. Xiao, H. Lu, Y. Fang, M.L. Sushko, Y. Cao et al., Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode. Adv. Energy Mater. 8, 1703238 (2018).

    [209] Y. Chen, B. Xi, M. Huang, L. Shi, S. Huang et al., Defect-selectivity and “order-in-disorder” engineering in carbon for durable and fast potassium storage. Adv. Mater. 34, e2108621 (2022).

    [210] M. Wang, Z. Yang, W. Li, L. Gu, Y. Yu, Superior sodium storage in 3D interconnected nitrogen and oxygen dual-doped carbon network. Small 12, 2559–2566 (2016).

    [211] D. Sun, B. Luo, H. Wang, Y. Tang, X. Ji et al., Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency. Nano Energy 64, 103937 (2019).

    [212] C. Matei Ghimbeu, J. Górka, V. Simone, L. Simonin, S. Martinet et al., Insights on the Na+ ion storage mechanism in hard carbon: discrimination between the porosity, surface functional groups and defects. Nano Energy 44, 327–335 (2018).

    [213] X. Tang, F. Xie, Y. Lu, Z. Chen, X. Li et al., Intrinsic effects of precursor functional groups on the Na storage performance in carbon anodes. Nano Res. 16, 12579–12586 (2023).

    [214] K.-Y. Lee, H. Qian, F.H. Tay, J.J. Blaker, S.G. Kazarian et al., Bacterial cellulose as source for activated nanosized carbon for electric double layer capacitors. J. Mater. Sci. 48, 367–376 (2013).

    [215] T. Zhang, J. Lang, L. Liu, L. Liu, H. Li et al., Effect of carboxylic acid groups on the supercapacitive performance of functional carbon frameworks derived from bacterial cellulose. Chin. Chem. Lett. 28, 2212–2218 (2017).

    [216] S. Alvin, C. Chandra, J. Kim, Controlling intercalation sites of hard carbon for enhancing Na and K storage performance. Chem. Eng. J. 411, 128490 (2021).

    [217] Q. Wang, Z. Chen, Q. Luo, H. Li, J. Li et al., Capillary evaporation on high-dense conductive ramie carbon for assisting highly volumetric-performance supercapacitors. Small 19, e2303349 (2023).

    [218] D.-S. Bin, Y. Li, Y.-G. Sun, S.-Y. Duan, Y. Lu et al., Structural engineering of multishelled hollow carbon nanostructures for high-performance Na-ion battery anode. Adv. Energy Mater. 8, 1800855 (2018).

    [219] Y. Zhang, Y. Zhu, J. Zhang, S. Sun, C. Wang et al., Optimizing the crystallite structure of lignin-based nanospheres by resinification for high-performance sodium-ion battery anodes. Energy Technol. 8, 1900694 (2020).

    [220] M. Yuan, H. Liu, F. Ran, Fast-charging cathode materials for lithium & sodium ion batteries. Mater. Today 63, 360–379 (2023).

    [221] H. Li, C. Qi, Y. Tao, H. Liu, D.-W. Wang et al., Quantifying the volumetric performance metrics of supercapacitors. Adv. Energy Mater. 9, 1900079 (2019).

    [222] Q. Li, Y.-N. Zhang, S. Feng, D. Liu, G. Wang et al., N, S self-doped porous carbon with enlarged interlayer distance as anode for high performance sodium ion batteries. Int. J. Energy Res. 45, 7082–7092 (2021).

    [223] Q. Meng, Y. Lu, F. Ding, Q. Zhang, L. Chen et al., Tuning the closed pore structure of hard carbons with the highest Na storage capacity. ACS Energy Lett. 4, 2608–2612 (2019).

    [224] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso et al., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015).

    [225] X.-K. Wang, J. Shi, L.-W. Mi, Y.-P. Zhai, J.-Y. Zhang et al., Hierarchical porous hard carbon enables integral solid electrolyte interphase as robust anode for sodium-ion batteries. Rare Met. 39, 1053–1062 (2020).

    [226] K. Wang, F. Sun, H. Wang, D. Wu, Y. Chao et al., Altering thermal transformation pathway to create closed pores in coal-derived hard carbon and boosting of Na+ plateau storage for high-performance sodium-ion battery and sodium-ion capacitor. Adv. Funct. Mater. 32, 2203725 (2022).

    [227] J. Yang, X. Wang, W. Dai, X. Lian, X. Cui et al., From micropores to ultra-micropores inside hard carbon: toward enhanced capacity in room-/low-temperature sodium-ion storage. Nano Micro Lett. 13, 98 (2021).

    [228] D. Guo, J. Qin, Z. Yin, J. Bai, Y.-K. Sun et al., Achieving high mass loading of Na3V2(PO4)3@carbon on carbon cloth by constructing three-dimensional network between carbon fibers for ultralong cycle-life and ultrahigh rate sodium-ion batteries. Nano Energy 45, 136–147 (2018).

    [229] Y. Li, Y. Lu, Q. Meng, A.C.S. Jensen, Q. Zhang et al., Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance. Adv. Energy Mater. 9, 1902852 (2019).

    Fujuan Wang, Tianyun Zhang, Tian Zhang, Tianqi He, Fen Ran. Recent Progress in Improving Rate Performance of Cellulose-Derived Carbon Materials for Sodium-Ion Batteries[J]. Nano-Micro Letters, 2024, 16(1): 148
    Download Citation