• Electro-Optic Technology Application
  • Vol. 31, Issue 5, 51 (2016)
GUO Qiang
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    GUO Qiang. Fast Memory Gradient Algorithm Based on Jensen-Bregman LogDet Metric[J]. Electro-Optic Technology Application, 2016, 31(5): 51 Copy Citation Text show less
    References

    [1] Porikli F, Tuzel O, MeerP. Covariance tracking using model update based on lie algebra[C]//Proc IEEE Conf Computer Vision and Pattern Recognition, New York, 2006: 728-735.

    [2] Arsigny V, Fillard P, Pennec X, et al. Log-Euclidean metrics for fast and simple calculus on diffusion tensors[J]. MagnReson Med, 2006, 56 (2): 411-421.

    [3] Cherian A, Sra S, Banerjee A, et al. Jensen Bregman LogDet divergence with application to efficient similarity search for covariance matrices[J]. IEEE Trans Pattern Anal Mach Intell, 2013, 35(9): 2161-2174.

    [4] HarandiMT, Salzmann M, Hartley R. From manifold to manifold: geometry-aware dimensionality reduction for SPD matrices[J]. Proc European Conf Computer Vision, Zurich, 2014: 17-32.

    [5] Tyagi A, Davis JW, Potamianos G. Steepest descent for efficient covariance tracking[J]. Proc IEEE Workshop Motion and Video Computing, Copper Mountain, 2008: 1-6.

    [7] Cherian A, Sra S, Banerjee A, et al. Jensen-Bregman LogDet Divergence for Efficient Similarity Computations on Positive Definite Tensors[R]. Technical Report, 2012: 2399-2406.

    [8] Tyagi A, Davis JW, Potamianos G. Steepest descent for efficient covariance tracking[J]. Proc IEEE Workshop Motion and video Computing, Copper Mountain, 2008: 1-6.

    [9] Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking[J]. IEEE Trans. Pattern Anal. Mach. Intell, 2003, 25 (5): 564-577.

    [10] Wu Y, Lim J, Yang MH. Online object tracking: a benchmark[C]//Proc IEEE Conf Computer Vision and Pattern Recognition, Portland, 2013: 2411-2418.