• Optics and Precision Engineering
  • Vol. 32, Issue 18, 2752 (2024)
Bo DUAN, Jie DONG, Qingmin LIU, and Shanglin HOU*
Author Affiliations
  • School of Science, Lanzhou University of Technology, Lanzhou730050, China
  • show less
    DOI: 10.37188/OPE.20243218.2752 Cite this Article
    Bo DUAN, Jie DONG, Qingmin LIU, Shanglin HOU. Supercontinuum spectrum in As2S3 photonic crystal fibers assisted with LiNbO3 crystal rods[J]. Optics and Precision Engineering, 2024, 32(18): 2752 Copy Citation Text show less
    References

    [1] R R ALFANO, S L SHAPIRO. Emission in the region 4000 to 7000 Å via four-photon coupling in glass. Physical Review Letters, 24, 584-587(1970).

    [2] 杨林永, 张斌, 侯静. 高功率3~5微米波段超连续谱光纤激光研究进展 [J]. 中国激光, 2022, 49(1): 0101001.YANGL Y, ZHANGB, HOUJ. Progress on High-Power Supercontinuum Laser Sources at 3-5 μm[J]. Chinese Journal of Lasers, 2022, 49(1): 0101001. (in Chinese)

    [3] T L CHENG, K NAGASAKA, T H TUAN et al. Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber. Optics Letters, 41, 2117-2120(2016).

    [4] C R PETERSEN, U MØLLER, I KUBAT et al. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nature Photonics, 8, 830-834(2014).

    [5] 杨未强, 宋锐, 韩凯, 等. 超连续谱激光光源研究进展[J]. 国防科技大学学报, 2020, 42(1): 1-9. doi: 10.11887/j.cn.202001001YANGW Q, SONGR, HANK, et al. Research progress of supercontinuum laser source[J]. Journal of National University of Defense Technology, 2020, 42(1): 1-9.(in Chinese). doi: 10.11887/j.cn.202001001

    [6] C LIN, R H STOLEN. New nanosecond continuum for excited-state spectroscopy. Applied Physics Letters, 28, 216-218(1976).

    [7] B GROSS, J T MANASSAH. Supercontinuum in the anomalous group-velocity dispersion region. JOSA B, 9, 1813-1818(1992).

    [8] C R PETERSEN, R D ENGELSHOLM, C MARKOS et al. Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers. Optics Express, 25, 15336-15348(2017).

    [9] A LEMIERE, F DESEVEDAVY, P MATHEY et al. Mid-infrared supercontinuum generation from 2 to 14  μm in arsenic- and antimony-free chalcogenide glass fibers. Journal of the Optical Society of America B, 36(2019).

    [10] J K RANKA, R S WINDELER, A J STENTZ. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Optics Letters, 25, 25-27(2000).

    [11] J SWIDERSKI. High-power mid-infrared supercontinuum sources: current status and future perspectives. Progress in Quantum Electronics, 38, 189-235(2014).

    [12] 尹冬梅, 戴世勋, 王训四, 等. 红外硫系玻璃光纤在传感领域的研究进展[J]. 激光与光电子学进展, 2013, 50(2): 020010. doi: 10.3788/lop50.020010YIND M, DAIS X, WANGX S, et al. Research progress of infrared chalcogenide glass fibers in sensing fields[J]. Laser & Optoelectronics Progress, 2013, 50(2): 020010.(in Chinese). doi: 10.3788/lop50.020010

    [13] S X DAI, Y Y WANG, X F PENG et al. A review of mid-infrared supercontinuum generation in chalcogenide glass fibers. Applied Sciences, 8, 707(2018).

    [14] G J RAJ, R V J RAJA, N NAGARAJAN et al. Tunable broadband spectrum under the influence of temperature in IR region using CS2 core photonic crystal fiber. Journal of Lightwave Technology, 34, 3503-3509(2016).

    [15] 侯尚林. 采用新型包层材料和基于微结构的光纤与光纤光栅的研究[D]. 北京: 北京邮电大学, 2008. doi: 10.3724/sp.j.1249.2013.01023HOUS L. Study on Fiber and Fiber Grating Based on New Cladding Materials and Microstructure[D].Beijing: Beijing University of Posts and Telecommunications, 2008. (in Chinese). doi: 10.3724/sp.j.1249.2013.01023

    [16] D H JUNDT. Temperature-dependent Sellmeier equation for the index of refraction, n(e), in congruent lithium niobate. Optics Letters, 22, 1553-1555(1997).

    [17] S M SALIMULLAH, M S HOSSAIN, M FAISAL. Efficient and wide supercontinuum generation in dispersion engineered tellurite clad As2S3 core photonic crystal fiber within 1mm of fiber length. Optical Engineering, 60(2021).

    [18] Y H XIE, L PEI, J J ZHENG et al. Design of steering wheel-type ring depressed-core 10-mode fiber with fully improved mode spacing. Optics Express, 29, 15067-15077(2021).

    [19] M KIRORIWAL, P SINGAL. Design and analysis of broadband supercontinuum generation in highly nonlinear LiGaSe2-based photonic crystal fibre. Pramana, 95, 145-152(2021).

    [20] R H STOLEN, C LIN. Self-phase-modulation in silica optical fibers. Physical Review A, 17, 1448-1453(1978).

    [21] A KUDLINSKI, V PUREUR, G BOUWMANS et al. Experimental investigation of combined four-wave mixing and Raman effect in the normal dispersion regime of a photonic crystal fiber. Optics Letters, 33, 2488-2490(2008).

    [22] Y P YATSENKO, A D PRYAMIKOV, V M MASHINSKY et al. Four-wave mixing with large Stokes shifts in heavily Ge-doped silica fibers. Optics Letters, 30, 1932-1934(2005).

    [23] G P AGRAWAL. Modulation instability induced by cross-phase modulation. Physical Review Letters, 59, 880-883(1987).

    [24] J HULT. A fourth-order runge–kutta in the interaction picture method for simulating supercontinuum generation in optical fibers. Journal of Lightwave Technology, 25, 3770-3775(2007).

    [25] A MEDJOURI, D ABED. Design and modelling of all-normal dispersion As39Se61 chalcogenide photonic crystal fiber for flat-top coherent mid-infrared supercontinuum generation. Optical Fiber Technology, 50, 154-164(2019).

    [26] 吕丁成, 张晓萍. 单轴晶体包层啁啾光纤光栅中电光效应和弹光效应的理论研究[J]. 光学学报, 2005, 25(8): 1025-1029.LÜD C, ZHANGX P. Theoretical study on electrooptic effect and elasto-optic effect in chirped fiber grating with uniaxial crystal cladding[J]. Acta Optica Sinica, 2005, 25(8): 1025-1029.(in Chinese)

    [27] 刘延君, 樊航, 侯尚林, 等. 一种基于电光晶体材料包层的新型光纤布拉格光栅传感器[J]. 兰州理工大学学报, 2018, 44(4): 167-172.LIUY J, FANH, HOUS L, et al. A novel photo-fiber Bragg grating transducer with electron-optic crystal cladding[J]. Journal of Lanzhou University of Technology, 2018, 44(4): 167-172.(in Chinese)

    [28] P G YAN, R J DONG, G L ZHANG et al. Numerical simulation on the coherent time-critical 2–5μm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile. Optics Communications, 293, 133-138(2013).

    [29] W P GENG, C J BAO, Y X FANG et al. 1.6-octave coherent OAM supercontinuum generation in As2S3 photonic crystal fiber. IEEE Access, 8, 168177-168185(2020).

    [30] M DIOUF, ABEN SALEM, R CHERIF et al. Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy. Applied Optics, 56, 163-169(2017).

    [31] 熊梦杰, 李进延, 罗兴, 等. 新型高双折射微结构纤芯光子晶体光纤的可调谐超连续谱的特性研究[J]. 物理学报, 2017, 66(9): 182-189. doi: 10.7498/aps.66.094204XIONGM J, LIJ Y, LUOX, et al. Experimental and numerical study of tuneable supercontinuum generation in new kind of highly birefringent photonic crystal fiber[J]. Acta Physica Sinica, 2017, 66(9): 182-189.(in Chinese). doi: 10.7498/aps.66.094204

    CLP Journals

    [1] Chuang XUE, Qingxuan LI, Wenqi ZHANG, Guanrui ZHAO, Guanzheng LI, Ruoyu JIA, Tingwu GE. Stimulated Brillouin scattering self Q-switching generates high-power white light supercontinuum spectrum[J]. Optics and Precision Engineering, 2025, 33(1): 50

    [2] Chuang XUE, Qingxuan LI, Wenqi ZHANG, Guanrui ZHAO, Guanzheng LI, Ruoyu JIA, Tingwu GE. Stimulated Brillouin scattering self Q-switching generates high-power white light supercontinuum spectrum[J]. Optics and Precision Engineering, 2025, 33(1): 50

    Bo DUAN, Jie DONG, Qingmin LIU, Shanglin HOU. Supercontinuum spectrum in As2S3 photonic crystal fibers assisted with LiNbO3 crystal rods[J]. Optics and Precision Engineering, 2024, 32(18): 2752
    Download Citation