• Photonics Research
  • Vol. 13, Issue 5, 1321 (2025)
Yi-Ling Zhang1, Li-Wei Wang2, Yang Liu1, Zhao-Xian Chen3, and Jian-Hua Jiang1,4,5,*
Author Affiliations
  • 1School of Physical Science and Technology, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
  • 2School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
  • 3National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
  • 4School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
  • 5Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
  • show less
    DOI: 10.1364/PRJ.550282 Cite this Article Set citation alerts
    Yi-Ling Zhang, Li-Wei Wang, Yang Liu, Zhao-Xian Chen, Jian-Hua Jiang, "Floquet hybrid skin-topological effects in checkerboard lattices with large Chern numbers," Photonics Res. 13, 1321 (2025) Copy Citation Text show less
    References

    [1] L. Feng, Y.-L. Xu, W. Fegadolli. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater., 12, 108-113(2013).

    [2] N. Okuma, K. Kawabata, K. Shiozaki. Topological origin of non-Hermitian skin effects. Phys. Rev. Lett., 124, 086801(2020).

    [3] K. Kawabata, M. Sato, K. Shiozaki. Higher-order non-Hermitian skin effect. Phys. Rev. B, 102, 205118(2020).

    [4] L. Li, C. H. Lee, S. Mu. Critical non-Hermitian skin effect. Nat. Commun., 11, 5491(2020).

    [5] X. Zhu, H. Wang, S. K. Gupta. Photonic non-Hermitian skin effect and non-Bloch bulk-boundary correspondence. Phys. Rev. Res., 2, 013280(2020).

    [6] X.-R. Ma, K. Cao, X.-R. Wang. Non-Hermitian chiral skin effect. Phys. Rev. Res., 6, 013213(2024).

    [7] C. M. Bender, S. Boettcher. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett., 80, 5243-5246(1998).

    [8] R. El-Ganainy, K. G. Makris, M. Khajavikhan. Non-Hermitian physics and PT symmetry. Nat. Phys., 14, 11-19(2018).

    [9] T. Suchanek, K. Kroy, S. A. M. Loos. Time-reversal and parity-time symmetry breaking in non-Hermitian field theories. Phys. Rev. E, 108, 064123(2023).

    [10] K. Jones-Smith, H. Mathur. Non-Hermitian quantum Hamiltonians with PT symmetry. Phys. Rev. A, 82, 042101(2010).

    [11] L. Feng, R. El-Ganainy, L. Ge. Non-Hermitian photonics based on parity-time symmetry. Nat. Photonics, 11, 752-762(2017).

    [12] M.-A. Miri, A. Alu. Exceptional points in optics and photonics. Science, 363, eaar7709(2019).

    [13] I. Mandal, E. J. Bergholtz. Symmetry and higher-order exceptional points. Phys. Rev. Lett., 127, 186601(2021).

    [14] Y.-C. Tzeng, C.-Y. Ju, G.-Y. Chen. Hunting for the non-Hermitian exceptional points with fidelity susceptibility. Phys. Rev. Res., 3, 013015(2021).

    [15] S. Ramezanpour, A. Bogdanov. Tuning exceptional points with Kerr nonlinearity. Phys. Rev. A, 103, 043510(2021).

    [16] K. Yokomizo, S. Murakami. Non-Bloch band theory of non-Hermitian systems. Phys. Rev. Lett., 123, 066404(2019).

    [17] S. Yao, Z. Wang. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett., 121, 086803(2018).

    [18] H.-Y. Wang, F. Song, Z. Wang. Amoeba formulation of non-Bloch band theory in arbitrary dimensions. Phys. Rev. X, 14, 021011(2024).

    [19] K. Yokomizo, S. Murakami. Non-Bloch band theory in bosonic Bogoliubov–de Gennes systems. Phys. Rev. B, 103, 165123(2021).

    [20] K. Ding, C. Fang, G. Ma. Non-Hermitian topology and exceptional-point geometries. Nat. Rev. Phys., 4, 745-760(2022).

    [21] K. Kawabata, K. Shiozaki, M. Ueda. Symmetry and topology in non-Hermitian physics. Phys. Rev. X, 9, 041015(2019).

    [22] A. Banerjee, A. Bandyopadhyay, R. Sarkar. Non-Hermitian topology and flat bands via an exact real-space decimation scheme. Phys. Rev. B, 110, 085431(2024).

    [23] H. Gao, H. Xue, Z. Gu. Non-Hermitian route to higher-order topology in an acoustic crystal. Nat. Commun., 12, 1888(2021).

    [24] H. Li, S. Wan. Dynamic skin effects in non-Hermitian systems. Phys. Rev. B, 106, L241112(2022).

    [25] W.-T. Xue, Y.-M. Hu, F. Song. Non-Hermitian edge burst. Phys. Rev. Lett., 128, 120401(2022).

    [26] Z. Li, L.-W. Wang, X. Wang. Observation of dynamic non-Hermitian skin effects. Nat. Commun., 15, 6544(2024).

    [27] L. Xiao, W.-T. Xue, F. Song. Observation of non-Hermitian edge burst in quantum dynamics. Phys. Rev. Lett., 133, 070801(2024).

    [28] K. Zhang, Z. Yang, C. Fang. Correspondence between winding numbers and skin modes in non-Hermitian systems. Phys. Rev. Lett., 125, 126402(2020).

    [29] Z. Yang, K. Zhang, C. Fang. Non-Hermitian bulk-boundary correspondence and auxiliary generalized Brillouin zone theory. Phys. Rev. Lett., 125, 226402(2020).

    [30] Y. Li, C. Liang, C. Wang. Gain-loss-induced hybrid skin-topological effect. Phys. Rev. Lett., 128, 223903(2022).

    [31] J. Sun, C.-A. Li, S. Feng. Hybrid higher-order skin-topological effect in hyperbolic lattices. Phys. Rev. B, 108, 075122(2023).

    [32] Y. Sun, X. Hou, T. Wan. Photonic Floquet skin-topological effect. Phys. Rev. Lett., 132, 063804(2024).

    [33] L.-W. Wang, Z.-K. Lin, J.-H. Jiang. Non-Hermitian topological phases and skin effects in kagome lattices. Phys. Rev. B, 108, 195126(2023).

    [34] E. Lustig, S. Weimann, Y. Plotnik. Photonic topological insulator in synthetic dimensions. Nature, 567, 356-360(2019).

    [35] M. Rechtsman, J. Zeuner, Y. Plotnik. Photonic Floquet topological insulators. Nature, 496, 196-200(2013).

    [36] K. Wintersperger, C. Braun, F. Ãoenal. Realization of an anomalous Floquet topological system with ultracold atoms. Nat. Phys., 16, 1058-1063(2020).

    [37] L. Zhou, J. Gong. Non-Hermitian Floquet topological phases with arbitrarily many real-quasienergy edge states. Phys. Rev. B, 98, 205417(2018).

    [38] B. Höckendorf, A. Alvermann, H. Fehske. Non-Hermitian boundary state engineering in anomalous Floquet topological insulators. Phys. Rev. Lett., 123, 190403(2019).

    [39] H. Wu, B.-Q. Wang, J.-H. An. Floquet second-order topological insulators in non-Hermitian systems. Phys. Rev. B, 103, L041115(2021).

    [40] H. Wu, J.-H. An. Floquet topological phases of non-Hermitian systems. Phys. Rev. B, 102, 041119(2020).

    [41] H. Wu, J.-H. An. Non-Hermitian Weyl semimetal and its Floquet engineering. Phys. Rev. B, 105, L121113(2022).

    [42] Z. Lin, W. Song, L.-W. Wang. Observation of topological transition in Floquet non-Hermitian skin effects in silicon photonics. Phys. Rev. Lett., 133, 073803(2024).

    [43] T. T. Koutserimpas, R. Fleury. Nonreciprocal gain in non-Hermitian time-Floquet systems. Phys. Rev. Lett., 120, 087401(2018).

    [44] H. Fan, H. Gao, T. Liu. Reconfigurable topological modes in acoustic non-Hermitian crystals. Phys. Rev. B, 107, L201108(2023).

    [45] S. Xia, D. Kaltsas, D. Song. Nonlinear tuning of PT symmetry and non-Hermitian topological states. Science, 372, 72-76(2021).

    [46] N. R. Cooper. Optical flux lattices for ultracold atomic gases. Phys. Rev. Lett., 106, 175301(2011).

    [47] J.-H. Jiang. Tunable topological Weyl semimetal from simple-cubic lattices with staggered fluxes. Phys. Rev. A, 85, 033640(2012).

    [48] Z. Ren, D. Liu, E. Zhao. Chiral control of quantum states in non-Hermitian spin-orbit-coupled fermions. Nat. Phys., 18, 385-389(2022).

    [49] W. Zhu, J. Gong. Photonic corner skin modes in non-Hermitian photonic crystals. Phys. Rev. B, 108, 035406(2023).

    Yi-Ling Zhang, Li-Wei Wang, Yang Liu, Zhao-Xian Chen, Jian-Hua Jiang, "Floquet hybrid skin-topological effects in checkerboard lattices with large Chern numbers," Photonics Res. 13, 1321 (2025)
    Download Citation