• NUCLEAR TECHNIQUES
  • Vol. 46, Issue 9, 090604 (2023)
Yingjie XIAO1、2, Liangxing PENG1、2, Pengcheng ZHAO1、2、*, Qiong LI1、2, Wan LUO1, and Tao YU1、2
Author Affiliations
  • 1School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
  • 2Virtual Simulation Experiment Teaching Center on Nuclear Energy and Technology, University of South China, Hengyang 421001, China
  • show less
    DOI: 10.11889/j.0253-3219.2023.hjs.46.090604 Cite this Article
    Yingjie XIAO, Liangxing PENG, Pengcheng ZHAO, Qiong LI, Wan LUO, Tao YU. Determination of the maximum core power of natural circulation leadbismuth reactors[J]. NUCLEAR TECHNIQUES, 2023, 46(9): 090604 Copy Citation Text show less
    X-Y cross-section of core for SPALLER-100
    Fig. 1. X-Y cross-section of core for SPALLER-100
    Relationship between fast neutron flux versus effective full power years (EFPY)
    Fig. 2. Relationship between fast neutron flux versus effective full power years (EFPY)
    Flowchart of the neutronics maximum power calculation platform
    Fig. 3. Flowchart of the neutronics maximum power calculation platform
    Relationship diagram of reactivity swing, specific power and mass fraction
    Fig. 4. Relationship diagram of reactivity swing, specific power and mass fraction
    Result verification of reactivity swing and initial excess reactivity
    Fig. 5. Result verification of reactivity swing and initial excess reactivity
    Result verification of neutronics power
    Fig. 6. Result verification of neutronics power
    Neutronics maximum power of the SPALLER-100 at different heights of core active zone
    Fig. 7. Neutronics maximum power of the SPALLER-100 at different heights of core active zone
    Reactor structure layout of SPALLER-100
    Fig. 8. Reactor structure layout of SPALLER-100
    Natural circulation power of SPALLER-100 at different heights of core active zone
    Fig. 9. Natural circulation power of SPALLER-100 at different heights of core active zone
    Maximum power of the SPALLER-100 at different heights of core active zone
    Fig. 10. Maximum power of the SPALLER-100 at different heights of core active zone

    设计参数

    Design parameter

    原设计值

    Original design

    value

    新设计值

    New design

    value

    功率Power / MWt100.00120.69

    换料周期

    Refueling cycle / a

    2020

    Pu质量分数

    Mass fraction of Pu / %

    20.5 & 30.827.0

    循环高度

    Circulation height / m

    44

    活性区高度

    Active zone height / m

    1.501.72

    栅径比

    Pitch-to-diameter ratio

    1.701.91

    比功率

    Specific power / W·gHM-1

    18.2619.20
    Table 1. Main parameters of core maximum power scheme
    反应性参数Reactivity parametersBOLMOLEOL
    αD / cents·℃-1-0.429 0-0.555 0-0.497 3
    αC / cents·℃-1-0.614 1-0.763 1-0.692 7
    αA / cents·℃-1-0.063 1-0.070 9-0.060 1
    αR / cents·℃-1-0.016 5-0.010 1-0.006 3
    αV / (cents / 1%)-30.14-34.37-31.32
    A / cents-167.02-212.43-189.18
    B / cents-91.14-112.74-101.02
    C / cents·℃-1-1.12-1.40-1.26
    Table 2. Reactivity correlation coefficient of SPALLER-100 under maximum power
    事故Accident scenarios参数ParametersBOLMOLEOL
    ULOHS相对功率Relative power0.070.070.07
    δTout / ℃72.9375.2873.97
    UTOP相对功率Relative power1.101.101.10
    δTout / ℃81.6263.5771.73
    UCIT相对功率Relative power1.401.401.40
    δTout / ℃7.598.628.54
    Table 3. Accident safety analysis of SPALLER-100 under maximum power
    Yingjie XIAO, Liangxing PENG, Pengcheng ZHAO, Qiong LI, Wan LUO, Tao YU. Determination of the maximum core power of natural circulation leadbismuth reactors[J]. NUCLEAR TECHNIQUES, 2023, 46(9): 090604
    Download Citation