• Photonics Research
  • Vol. 9, Issue 7, 1234 (2021)
Bahareh Marzban1、2, Daniela Stange2、3, Denis Rainko2、3, Zoran Ikonic4, Dan Buca2、3, and Jeremy Witzens1、2、*
Author Affiliations
  • 1Institute of Integrated Photonics, RWTH Aachen University, 52074 Aachen, Germany
  • 2Jülich-Aachen Research Alliance (JARA), Fundamentals of Future Information Technologies, Germany
  • 3Peter Grünberg Institute, 52428 Jülich, Germany
  • 4University of Leeds, School of Electronic and Electrical Engineering, Woodhouse, Leeds LS2 9JT, UK
  • show less
    DOI: 10.1364/PRJ.416505 Cite this Article Set citation alerts
    Bahareh Marzban, Daniela Stange, Denis Rainko, Zoran Ikonic, Dan Buca, Jeremy Witzens. Modeling of a SiGeSn quantum well laser[J]. Photonics Research, 2021, 9(7): 1234 Copy Citation Text show less

    Abstract

    We present comprehensive modeling of a SiGeSn multi-quantum well laser that has been previously experimentally shown to feature an order of magnitude reduction in the optical pump threshold compared to bulk lasers. We combine experimental material data obtained over the last few years with k·p theory to adapt transport, optical gain, and optical loss models to this material system (drift-diffusion, thermionic emission, gain calculations, free carrier absorption, and intervalence band absorption). Good consistency is obtained with experimental data, and the main mechanisms limiting the laser performance are discussed. In particular, modeling results indicate a low non-radiative lifetime, in the 100 ps range for the investigated material stack, and lower than expected Γ-L energy separation and/or carrier confinement to play a dominant role in the device properties. Moreover, they further indicate that this laser emits in transverse magnetic polarization at higher temperatures due to lower intervalence band absorption losses. To the best of our knowledge, this is the first comprehensive modeling of experimentally realized SiGeSn lasers, taking the wealth of experimental material data accumulated over the past years into account. The methods described in this paper pave the way to predictive modeling of new (Si)GeSn laser device concepts.
    n=kBTL2πvdvmv,jF0(EfeECEv,jkBT),(A1)

    View in Article

    Jn=anq(vn,bnbmn,bmn,wvn,wnweΔECkBT),(A2)

    View in Article

    Jp=apq(vp,bpbmp,bmp,wvp,wpweΔEVkBT),(A3)

    View in Article

    vn/p,b/w=kBT2πmn/p,b/w(A4)

    View in Article

    n/pb/w=2(mn/p,b/w·kBT2π2)32eEC/V,b/wEfe/h,b/wkBT,(A5)

    View in Article

    Jn=an2qmn,bkB2(2π)23T2(eEC,bEfe,bkBTeEC,bEfe,wkBT)=anAn*T2(eEC,bEfe,bkBTeEC,bEfe,wkBT),(A6)

    View in Article

    Jp=ap2qmp,bkB2(2π)23T2(e+EV,bEfh,bkBTe+EV,bEfh,wkBT)=apAp*T2(e+EV,bEfh,bkBTe+EV,bEfh,wkBT),(A7)

    View in Article

    mR,Γ=mΓ,,b,(A8)

    View in Article

    mR,L=4·mL,,b=4·mL,t,b2+2mL,l,bmL,t,b3,(A9)

    View in Article

    mR,HH=mHH,,b,(A10)

    View in Article

    mR,LH=mLH,,b,(A11)

    View in Article

    mn/p=(vdvmv3/2eEvEC/VkBT)2/3,(A12)

    View in Article

    an/p=vmR,veEvEC/VkBTmn/p.(A13)

    View in Article

    g21sub=πq2nε0cm02hν21|MT(E21)|2ρr(E21)(f2f1),(B1)

    View in Article

    |M|2=(m0mΓ1)Eg+Δso2(Eg+23Δso)m0Eg,(B2)

    View in Article

    g21(E21)=vc,jcvv,jvg21sub(vc,jc,vv,jv),(B3)

    View in Article

    ρr(E21)=mr,2π(B4)

    View in Article

    1mr,=1mvc,+1mvv,,(B5)

    View in Article

    η=|zψncψnv*dz|2zψnvψnv*dzzψncψnc*dz.(B6)

    View in Article

    g(hν0)=g21(E21)L(hν0E21)dE21.(B7)

    View in Article

    ΓTE=GeSnn|E|2rRdSZ0E×H·en·dS,(B8)

    View in Article

    ΓTM=GeSnn|Ez|2rRdSZ0E×H·en·dS,(B9)

    View in Article

    (Δxy+n2k02)E=0,(B10)

    View in Article

    (Δuv+n2k02)E=0,(B11)

    View in Article

    n=euR·n=(xRn)@y=0.(B12)

    View in Article

    Im(neff,uv)=GeSnIm(euRn)Re(euRn)|E|2dudzZ0E×H·en,uv·dudz,(B13)

    View in Article

    Im(neff,uv)=GeSnIm(n)Re(n)|E|2xRdxdzZ0E×H·en,xy·dxdz.(B14)

    View in Article

    |s,ν,k=eik·r(|s,ν+m0lul|k·p|s,νE0El|ul),(C1)

    View in Article

    Hij=[Ej(0)+2k22m0]δij+2m02α,βkαkβli,0|pα|ulul|pβ|j,0E0El,(C2)

    View in Article

    H=[P+QSR0S/22RS+PQ0R2Q3/2SR+0PQS3/2S+2Q0R+S+P+Q2R+S+/2S+/22Q+3/2S2RP+Δso02R+3/2S+2Q+S/20P+Δso],(C3)

    View in Article

    MT=i,k|e·p|j,k=α,βeαkβ(δijδα,β+2m0li,0|pα|ulul|pβ|j,0E0El),(C4)

    View in Article

    l1|pα|ulul|pβ|6E0El=m02[3γ2(δαxδβxδαyδβy)i3γ3(δαxδβy+δαyδβx)],(C5)

    View in Article

    l2|pα|ulul|pβ|6E0El=m0223γ3(δαxδβz+δαzδβxiδαyδβziδαzδβy),(C6)

    View in Article

    l3|pα|ulul|pβ|6E0El=m02γ2(δαxδβx+δαyδβy2δαzδβz),(C7)

    View in Article

    l4|pα|ulul|pβ|6E0El=m022[3γ3(δαxδβz+δαzδβx+iδαyδβz+iδαzδβy)].(C8)

    View in Article

    i={1},j={5,6}|i|e·p|j|HHSO2=22(γ22+γ32)(kx2+ky2)+22γ32(kz2+k2),(C9)

    View in Article

    i={2},j={5,6}i|e·p|j|LHSO2=232γ22(3kz2+k2)+322γ32(kz2+k2).(C10)

    View in Article

    i={1},j={5,6}i|e·p|j|HHSO,TE2=32(γ22+γ32)(kx2+ky2)+322γ32(kz2),(C11)

    View in Article

    i={2},j={5,6}i|e·p|j|LHSO,TE2=2γ22(kx2+ky2)+922γ32(kz2),(C12)

    View in Article

    i={1},j={5,6}i|e·p|j|HHSO,TM2=322γ32(kx2+ky2),(C13)

    View in Article

    i={2},j={5,6}i|e·p|j|LHSO,TM2=82γ22(kz2)+922γ32(kx2+ky2).(C14)

    View in Article

    |MT|av.2=22γ32k2+432γ22k2.(C15)

    View in Article

    |MT|av.,HHSO,TE2=22(γ22+γ32)k2+122γ32k2,(C16)

    View in Article

    |MT|av.,LHSO,TE2=232γ22k2+322γ32k2,(C17)

    View in Article

    |MT|av.,HHSO,TM2=2γ32k2,(C18)

    View in Article

    |MT|av.,LHSO,TM2=832γ22k2+32γ32k2.(C19)

    View in Article

    Bahareh Marzban, Daniela Stange, Denis Rainko, Zoran Ikonic, Dan Buca, Jeremy Witzens. Modeling of a SiGeSn quantum well laser[J]. Photonics Research, 2021, 9(7): 1234
    Download Citation