• Optics and Precision Engineering
  • Vol. 33, Issue 1, 107 (2025)
Jiaxin LI, Fajie DUAN*, Xiao FU, and Guangyue NIU
Author Affiliations
  • State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin300072, China
  • show less
    DOI: 10.37188/OPE.20253301.0107 Cite this Article
    Jiaxin LI, Fajie DUAN, Xiao FU, Guangyue NIU. Full-reference image quality assessment based on texture singular value decomposition[J]. Optics and Precision Engineering, 2025, 33(1): 107 Copy Citation Text show less
    References

    [1] H N HAN, F QIAN, J W LV et al. Image dehazing method quality assessment. Opt. Precision Eng., 30, 721-733(2022).

         韩昊男, 钱锋, 吕建威. 图像去雾方法质量评价. 光学 精密工程, 30, 721-733(2022).

    [2] B CH JIANG, SH L BIAN, CH Y SHI et al. Full reference image quality assessment based on color appearance-based phase consistency. Opt. Precision Eng., 31, 1509-1521(2023).

         江本赤, 卞仕磊, 史晨阳. 基于色貌尺度相位一致性的全参考图像质量评价. 光学 精密工程, 31, 1509-1521(2023).

    [3] P LU, K Y LIU, G L ZOU et al. No reference image quality assessment based on fusion of multiple features and convolutional neural network. Chinese Journal of Liquid Crystals and Displays, 37, 66-76(2022).

         卢鹏, 刘楷贇, 邹国良. 基于多特征融合和卷积神经网络的无参考图像质量评价. 液晶与显示, 37, 66-76(2022).

    [4] 何炳阳, 廖俊勃, 张宇. 基于SEM的彩色融合图像质量主观评价方法. 激光与红外, 53, 1375-1383(2023).

         B Y HE, J B LIAO, Y ZHANG et al. Subjective assessment of color fused image quality based on SEM. Laser & Infrared, 53, 1375-1383(2023).

    [5] 惠子薇, 何坤, 冯犇. 基于视觉特性的图像质量评价. 计算机工程, 49, 189-195(2023).

         Z W HUI, K HE, B FENG et al. Image quality assessment based on visual characteristics. Computer Engineering, 49, 189-195(2023).

    [6] X D JIN, Q B SANG. No-reference image quality assessment algorithm based on semi-supervised learning. Laser & Optoelectronics Progress, 60, 272-279(2023).

         金向东, 桑庆兵. 基于半监督学习的无参考图像质量评价算法. 激光与光电子学进展, 60, 272-279(2023).

    [7] CHEN C M, MOU X Q Phase congruency based on derivatives of circular symmetric Gaussian function: an efficient feature map for image quality assessment. EURASIP Journal on Image and Video Processing, 1, 35-40(2023).

    [8] A K VENKATARAMANAN, C STEJEREAN, I KATSAVOUNIDIS et al. One transform to compute them all: efficient fusion-based full-reference video quality assessment. IEEE Transactions on Image Processing, 33, 509-524(2023).

    [9] W ZHOU, G H YUE, R Z ZHANG et al. Reduced-reference quality assessment of point clouds via content-oriented saliency projection. IEEE Signal Processing Letters, 30, 354-358(2023).

    [10] N CHEN, B Q CAI, G N YANG et al. Image retargeting quality assessment using content integrity and structural consistency. Journal of Fuzhou University (Natural Science Edition), 51, 517-524(2023).

         陈楠, 蔡柏亲, 杨恭宁. 考虑结构一致性和内容完整性的重定向图像质量评价. 福州大学学报(自然科学版), 51, 517-524(2023).

    [11] W ZHANG, SH L ZHAO, Y H LIU et al. Full reference video quality assessment based on multi-scale spatiotemporal feature aggregation. Computer Engineering and Applications, 59, 154-162(2023).

         张威, 赵世灵, 刘银豪. 多尺度时空特征聚合的全参考视频质量评价. 计算机工程与应用, 59, 154-162(2023).

    [12] B C JIANG, S L BIAN, C Y SHI et al. Full-reference image quality assessment based on multi-channel visual information fusion. Applied Sciences, 13, 8760(2023).

    [13] J Y CHEN, G B YANG, S C WANG et al. Image dehazing assessment: a real-world dataset and a haze density-aware criteria. IEEE Transactions on Multimedia, 26, 6037-6049(2023).

    [14] K OHASHI, Y NAGATANI, M YOSHIGOE et al. Applicability evaluation of full-reference image quality assessment methods for computed tomography images. Journal of Digital Imaging, 36, 2623-2634(2023).

    [15] K Y DING, K D MA, S Q WANG et al. Comparison of full-reference image quality models for optimization of image processing systems. International Journal of Computer Vision, 129, 1258-1281(2021).

    [16] M NARWARIA, W S LIN. SVD-based quality metric for image and video using machine learning. IEEE Transactions on Systems, Man, and Cybernetics, 42, 347-364(2012).

    [17] T H YU, M Y LIU. Image quality evaluation method based on human visual system. Journal of Beijing University of Posts and Telecommunications, 46, 129-136(2023).

         于天河, 柳梦瑶. 基于人眼视觉系统的图像质量评价方法. 北京邮电大学学报, 46, 129-136(2023).

    [18] Z WANG, A C BOVIK, H R SHEIKH et al. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13, 600-612(2004).

    [19] Z WANG, E P SIMONCELLI, A C BOVIK. Multiscale structural similarity for image quality assessment, 1398-1402(2003).

    [20] M P SAMPAT, Z WANG, S GUPTA et al. Complex wavelet structural similarity: a new image similarity index. IEEE Transactions on Image Processing, 18, 2385-2401(2009).

    [21] Z WANG, Q LI. Information content weighting for perceptual image quality assessment. IEEE Transactions on Image Processing, 20, 1185-1198(2011).

    [22] H R SHEIKH, A C BOVIK, G DE VECIANA. An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Transactions on Image Processing, 14, 2117-2128(2005).

    [23] H R SHEIKH, A C BOVIK. Image information and visual quality. IEEE Transactions on Image Processing, 15, 430-444(2006).

    [24] W F XUE, L ZHANG, X Q MOU et al. Gradient magnitude similarity deviation: a highly efficient perceptual image quality index. IEEE Transactions on Image Processing, 23, 684-695(2014).

    [25] W SUN, Q M LIAO, J H XUE et al. SPSIM: a superpixel-based similarity index for full-reference image quality assessment. IEEE Transactions on Image Processing, 27, 4232-4244(2018).

    [26] H MOKAYED, P SHIVAKUMARA, H H WOON et al. A new DCT-PCM method for license plate number detection in drone images. Pattern Recognition Letters, 148, 45-53(2021).

    [27] L ZHANG, L ZHANG, X Q MOU et al. FSIM: a feature similarity index for image quality assessment. IEEE Transactions on Image Processing, 20, 2378-2386(2011).

    [28] M MOBINI, M R FARAJI. Multi-scale gradient wavelet-based image quality assessment. The Visual Computer, 40, 8713-8728(2024).

    [29] D M CHANDLER. Most apparent distortion: full-reference image quality assessment and the role of strategy. Journal of Electronic Imaging, 19(2010).

    [30] A SHNAYDERMAN, A GUSEV, A M ESKICIOGLU. An SVD-based grayscale image quality measure for local and global assessment. IEEE Transactions on Image Processing, 15, 422-429(2006).

    [31] Y T LI, X F LIAO, M L ZHOU et al. Full-reference image quality assessment using self-attention and multiscale features. Journal of Circuits, Systems and Computers, 33, 2450155(2024).

    [32] S BOSSE, D MANIRY, K R MULLER et al. Deep neural networks for No-reference and full-reference image quality assessment. IEEE Transactions on Image Processing, 27, 206-219(2018).

    [33] R ZHANG, P ISOLA, A A EFROS et al. The unreasonable effectiveness of deep features as a perceptual metric, 18, 586-595(2018).

    [34] A MANSOURI, A MAHMOUDI-AZNAVEH. SSVD: Structural SVD-based image quality assessment. Signal Processing: Image Communication, 74, 54-63(2019).

    [35] K Y DING, K D MA, S Q WANG et al. Image quality assessment: unifying structure and texture similarity. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 2567-2581(2022).

    [36] 齐凯华, 沈鹏, 陈江义. 基于边缘特征的图像清晰度评价方法. 机械设计与制造, 174-176, 181(2023).

         K H QI, P SHEN, J Y CHEN et al. Image definition evaluation method based on edge feature. Machinery Design & Manufacture, 2023, 174-176, 181.

    [37] H ANDREWS, C PATTERSON. Singular value decompositions and digital image processing. IEEE Transactions on Acoustics, Speech, and Signal Processing, 24, 26-53(1976).

    [38] A MAHMOUDI-AZNAVEH, A MANSOURI, F TORKAMANI-AZAR et al. Image quality measurement besides distortion type classifying. Optical Review, 16, 30-34(2009).

    [39] L/Y)Y WU. Research and Application of Unsupervised Image Quality Evaluation Based on Visual Perception(2022).

         吴乐园. 基于视觉感知的无监督图像质量评价研究与应用(2022).

    [40] N PONOMARENKO, L N JIN, O IEREMEIEV et al. Image database TID2013: peculiarities, results and perspectives. Signal Processing: Image Communication, 30, 57-77(2015).

    [41] A MANSOURI, A M AZNAVEH, F TORKAMANI-AZAR et al. Image quality assessment using the singular value decomposition theorem. Optical Review, 16, 49-53(2009).

    [42] C E FAN, J W RAN, J YAN et al. No-reference image quality assessment using joint color space statistical and texture feature. Opt. Precision Eng., 26, 916-926(2018).

         范赐恩, 冉杰文, 颜佳. 颜色空间统计联合纹理特征的无参考图像质量评价. 光学 精密工程, 26, 916-926(2018).

    [43] 段影影, 陈武凡, 冯前进. 医学图像质量评价中的梯度加权SSIM. 计算机工程与应用, 47, 205-210(2011).

         Y Y DUAN, W F CHEN, Q J FENG et al. Gradient-weighted SSIM based medical image quality assessment. Computer Engineering and Applications, 47, 205-210(2011).

    [44] J M PREWITT. Object enhancement and extraction. Picture Processing Psychopictorics, 10, 15-19(1970).

    [45] N PONOMARENKO, V LUKIN, A ZELENSKY. TID2008-A database for evaluation of full-reference visual quality assessment metrics. Advances of Modern Radioelectronics, 10, 30-45(2009).

    [46] K GU, G T ZHAI, X K YANG et al. Subjective and objective quality assessment for images with contrast change, 15, 383-387(2013).

    [47] F AUTRUSSEAU, T STUETZ, V PANKAJAKSHAN. Subjective quality assessment of selective encryption techniques. http://www.irccyn.ec-nantes.fr/ivcdb

    [48] Y Q LIU, Q L JIA, S S WANG et al. Textural-structural joint learning for no-reference super-resolution image quality assessment. ArXiv Preprint ArXiv, 13847, 35-38(2022).

    [49] L KRASULA, P LE CALLET, K FLIEGEL et al. Quality assessment of sharpened images: challenges, methodology, and objective metrics. IEEE Transactions on Image Processing, 26, 1496-1508(2017).

    Jiaxin LI, Fajie DUAN, Xiao FU, Guangyue NIU. Full-reference image quality assessment based on texture singular value decomposition[J]. Optics and Precision Engineering, 2025, 33(1): 107
    Download Citation