• Journal of Terahertz Science and Electronic Information Technology
  • Vol. 20, Issue 6, 565 (2022)
SHIJinhui*, DONGGuohua, XUWenxia, WANG Ying, SUN Mengke, LIYuxiang, ZHUZheng, and LYU Bo
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.11805/tkyda2021253 Cite this Article
    SHIJinhui, DONGGuohua, XUWenxia, WANG Ying, SUN Mengke, LIYuxiang, ZHUZheng, LYU Bo. Optically controlled Fano resonance in hybrid fishscale metamaterial[J]. Journal of Terahertz Science and Electronic Information Technology , 2022, 20(6): 565 Copy Citation Text show less
    References

    [1] SIEGEL P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910-928. doi: 10.1109/22.989974.

    [2] RAHM M,LI J S,PADILLA W J. THz wave modulators:a brief review on different modulation techniques[J]. Journal of Infrared, Millimeter,and Terahertz Waves, 2013,34(1):1-27.

    [4] FANO U. Effects of configuration interaction on intensities and phase shifts[J]. Physical Review, 1961,124(6):1866-1878. doi: 10.1103/PhysRev.124.1866.

    [5] ZHANG S,GENOV D A,WANG Y,et al. Plasmon-induced transparency in metamaterials[J]. Physical Review Letters, 2008,101 (4):047401. doi:10.1103/PhysRevLett.101.047401.

    [6] FEDOTOV V A,MLADYONOV P L,PROSVIRNIN S L,et al. Planar electromagnetic metamaterial with a fish scale structure[J]. Physical Review E, 2005,72(5):056613. doi:10.1103/PhysRevE.72.056613.

    [7] LIMONOV M F,RYBIN M V,PODDUBNY A N,et al. Fano resonances in photonics[J]. Nature Photonics, 2017,11(9):543-554. doi:10.1038/nphoton.2017.142.

    [8] FEDOTOV V A, ROSE M, PROSVIRNIN S L, et al. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry[J]. Physical Review Letters, 2007,99(14):147401. doi:10.1103/PhysRevLett.99.147401.

    [9] LU X Q,SHI J H,LIU R,et al. Highly-dispersive electromagnetic induced transparency in planar symmetric metamaterials[J]. Optics Express, 2012,20(16):17581-17590. doi:10.1364/OE.20.017581.

    [11] SRIVASTAVA Y K,CONG L,SINGH R. Dual-surface flexible THz Fano metasensor[J]. Applied Physics Letters, 2017,111(20): 201101. doi:10.1063/1.5000428.

    [12] MANIJAPPA M,PITCHAPPA P,SINGH N,et al. Reconfigurable MEMS Fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies[J]. Nature Communications, 2018,9(1):4056. doi:10.1038/s41467-018-06360-5.

    [13] GU J,SINGH R,LIU X,et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nature Communications, 2012(3):1151. doi:10.1038/ncomms2153.

    [14] JUNG H,JO H,LEE W,et al. Electrical control of electromagnetically induced transparency by terahertz metamaterial funneling[J]. Advanced Optical Materials, 2019,7(2):1801205. doi:10.1002/adom.201801205.

    [15] XU Q,SU X,OUYANG C,et al. Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials[J]. Optics Letters, 2016,41(19):4562-4565. doi:10.1364/OL.41.004562.

    [16] HU Y,JIANG T,ZHOU J,et al. Ultrafast Terahertz frequency and phase tuning by all-optical molecularization of metasurfaces[J]. Advanced Optical Materials, 2019,7(22):1901050. doi:10.1002/adom.201901050.

    [17] WANG Y, ZHU J W, ZHANG H. Optically controlled redshift switching effects in hybrid fishscale metamaterials[J]. AIP Advances, 2018,8(5):055319. doi:10.1063/1.5023499.

    SHIJinhui, DONGGuohua, XUWenxia, WANG Ying, SUN Mengke, LIYuxiang, ZHUZheng, LYU Bo. Optically controlled Fano resonance in hybrid fishscale metamaterial[J]. Journal of Terahertz Science and Electronic Information Technology , 2022, 20(6): 565
    Download Citation