• Advanced Photonics
  • Vol. 1, Issue 3, 036003 (2019)
Waleed Tahir1, Ulugbek S. Kamilov2,3, and Lei Tian1,*
Author Affiliations
  • 1Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
  • 2Washington University in St. Louis, Department of Electrical and Systems Engineering, St. Louis, Missouri, United States
  • 3Washington University in St. Louis, Department of Computer Science and Engineering, St. Louis, Missouri, United States
  • show less
    DOI: 10.1117/1.AP.1.3.036003 Cite this Article Set citation alerts
    Waleed Tahir, Ulugbek S. Kamilov, Lei Tian, "Holographic particle localization under multiple scattering," Adv. Photon. 1, 036003 (2019) Copy Citation Text show less
    References

    [1] I. Moon et al. Automated three-dimensional identification and tracking of micro/nanobiological organisms by computational holographic microscopy. Proc. IEEE, 97, 990-1010(2009).

    [2] T.-W. Su, L. Xue, A. Ozcan. High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories. Proc. Natl. Acad. Sci. U. S. A., 109, 16018-16022(2012).

    [3] F. C. Cheong et al. Flow visualization and flow cytometry with holographic video microscopy. Opt. Express, 17, 13071-13079(2009).

    [4] J. Garcia-Sucerquia et al. Digital in-line holographic microscopy. Appl. Opt., 45, 836-850(2006).

    [5] J. Sheng, E. Malkiel, J. Katz. Digital holographic microscope for measuring three-dimensional particle distributions and motions. Appl. Opt., 45, 3893-3901(2006).

    [6] L. Tian et al. Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography. Appl. Opt., 49, 1549-1554(2010).

    [7] P. Picart et al. Tracking high amplitude auto-oscillations with digital Fresnel holograms. Opt. Express, 15, 8263-8274(2007).

    [8] U. Schnars, W. P. Jüptner. Digital recording and numerical reconstruction of holograms. Meas. Sci. Technol., 13, R85(2002).

    [9] F. Soulez et al. Inverse-problem approach for particle digital holography: accurate location based on local optimization. J. Opt. Soc. Am. A, 24, 1164-1171(2007).

    [10] W. Chen et al. Empirical concentration bounds for compressive holographic bubble imaging based on a Mie scattering model. Opt. Express, 23, 4715-4725(2015).

    [11] D. J. Brady et al. Compressive holography. Opt. Express, 17, 13040-13049(2009).

    [12] Y. Rivenson, A. Stern, B. Javidi. Compressive Fresnel holography. J. Disp. Technol., 6, 506-509(2010).

    [13] M. Born, E. Wolf. Scattering from inhomogeneous media. Principles of Optics, 695-734(2003).

    [14] W. C. Chew, Y. M. Wang. Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method. IEEE Trans. Med. Imaging, 9, 218-225(1990).

    [15] F.-C. Chen, W. C. Chew. Experimental verification of super resolution in nonlinear inverse scattering. Appl. Phys. Lett., 72, 3080-3082(1998).

    [16] U. S. Kamilov et al. A recursive Born approach to nonlinear inverse scattering. IEEE Signal Process. Lett., 23, 1052-1056(2016).

    [17] G. A. Tsihrintzis, A. J. Devaney. Higher-order (nonlinear) diffraction tomography: reconstruction algorithms and computer simulation. IEEE Trans. Image Process., 9, 1560-1572(2000).

    [18] R. Pierri, G. Leone. Inverse scattering of dielectric cylinders by a second-order born approximation. IEEE Trans. Geosci. Remote Sens., 37, 374-382(1999).

    [19] P. M. van den Berg, R. E. Kleinman. A contrast source inversion method. Inverse Prob., 13, 1607-1620(1997).

    [20] M. T. Bevacquad et al. Non-linear inverse scattering via sparsity regularized contrast source inversion. IEEE Trans. Comput. Imaging, 3, 296-304(2017).

    [21] P. M. van den Berg, A. Van Broekhoven, A. Abubakar. Extended contrast source inversion. Inverse Prob., 15, 1325-1344(1999).

    [22] P. Van den Berg, A. Abubakar. Contrast source inversion method: state of art. Prog. Electromagn. Res., 34, 189-218(2001).

    [23] R. E. Kleinman, P. M. van den Berg. A modified gradient method for two-dimensional problems in tomography. J. Comput. Appl. Math., 42, 17-35(1992).

    [24] R. E. Kleinman, P. M. van den Berg. An extended range-modified gradient technique for profile inversion. Radio Sci., 28, 877-884(1993).

    [25] H.-Y. Liu et al. SEAGLE: sparsity-driven image reconstruction under multiple scattering. IEEE Trans. Comput. Imaging, 4, 73-86(2018).

    [26] Y. Ma et al. Accelerated image reconstruction for nonlinear diffractive imaging. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), 6473-6477(2018).

    [27] T.-A. Pham et al. Versatile reconstruction framework for diffraction tomography with intensity measurements and multiple scattering. Opt. Express, 26, 2749-2763(2018).

    [28] J. Lim et al. Beyond Born–Rytov limit for super-resolution optical diffraction tomography. Opt. Express, 25, 30445-30458(2017).

    [29] F. Simonetti. Multiple scattering: the key to unravel the subwavelength world from the far-field pattern of scattered wave. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 73, 036619(2006).

    [30] E. Mudry et al. Electromagnetic wave imaging of three-dimensional targets using a hybrid iterative inversion method. Inverse Prob., 28, 065007(2012).

    [31] L. Tian, L. Waller. 3D intensity and phase imaging from light field measurements in an LED array microscope. Optica, 2, 104-111(2015).

    [32] U. S. Kamilov et al. Optical tomographic image reconstruction based on beam propagation and sparse regularization. IEEE Trans. Comput. Imaging, 2, 59-70(2016).

    [33] U. S. Kamilov et al. Learning approach to optical tomography. Optica, 2, 517-522(2015).

    [34] M. Guizar-Sicairos, J. R. Fienup. Understanding the twin-image problem in phase retrieval. J. Opt. Soc. Am. A, 29, 2367-2375(2012).

    [35] A. Beck, D. P. Palomar, Y. C. Eldar, M. Teboulle. Gradient-based algorithms with applications to signal-recovery problems. Convex Optimization in Signal Processing and Communications, 42-88(2009).

    [36] W. Zhang et al. Twin-image-free holography: a compressive sensing approach. Phys. Rev. Lett., 121, 093902(2018).

    [37] R. Ling et al. High-throughput intensity diffraction tomography with a computational microscope. Biomed. Opt. Express, 9, 2130-2141(2018).

    [38] J. Lim et al. Learning tomography assessed using Mie theory. Phys. Rev. Appl., 9, 034027(2018).

    [39] L. Rokach, O. Maimon. Clustering Methods, 321-352(2005).

    [40] Gnome icon theme, ,” (accessed 3 March 2019).

    [41] D. Mas et al. Fast algorithms for free-space diffraction patterns calculation. Opt. Commun., 164, 233-245(1999).

    [42] A. D. Yaghjian. Electric dyadic Green’s functions in the source region. Proc. IEEE, 68, 248-263(1980).

    [43] J. Van Bladel. Some remarks on Green’s dyadic for infinite space. IRE Trans. Antennas Propag., 9, 563-566(1961).

    [44] A. Fannjiang. Tv-min and greedy pursuit for constrained joint sparsity and application to inverse scattering. Math. Mech. Complex Syst., 1, 81-104(2013).

    [45] A. Fannjiang. Compressive sensing theory for optical systems described by a continuous model(2015).

    [46] A. Beck, M. Teboulle. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process., 18, 2419-2434(2009).

    [47] U. S. Kamilov. A parallel proximal algorithm for anisotropic total variation minimization. IEEE Trans. Image Process., 26, 539-548(2017).

    [48] N. Andrei. An acceleration of gradient descent algorithm with backtracking for unconstrained optimization. Numer. Algorithms, 42, 63-73(2006).

    [49] M. Azimi, A. Kak. Distortion in diffraction tomography caused by multiple scattering. IEEE Trans. Med. Imaging, 2, 176-195(1983).

    [50] S. Bolte, F. Cordelieres. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc., 224, 213-232(2006).

    [51] A. Ishimaru. Wave Propagation and Scattering in Random Media, 2(1978).

    [52] G. Osnabrugge, S. Leedumrongwatthanakun, I. M. Vellekoop. A convergent born series for solving the inhomogeneous Helmholtz equation in arbitrarily large media. J. Comput. Phys., 322, 113-124(2016).

    [53] Y. Sun, Z. Xia, U. S. Kamilov. Efficient and accurate inversion of multiple scattering with deep learning. Opt. Express, 26, 14678-14688(2018).

    [54] S. Li et al. Imaging through glass diffusers using densely connected convolutional networks. Optica, 5, 803-813(2018).

    [55] Y. Li, Y. Xue, L. Tian. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media. Optica, 5, 1181-1190(2018).