• Chinese Optics Letters
  • Vol. 22, Issue 7, 071903 (2024)
Meng Li, Jie Song, Fuqiang Li, and Cibo Lou*
Author Affiliations
  • School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
  • show less
    DOI: 10.3788/COL202422.071903 Cite this Article Set citation alerts
    Meng Li, Jie Song, Fuqiang Li, Cibo Lou, "Observation of optical rogue waves in 2D optical lattice," Chin. Opt. Lett. 22, 071903 (2024) Copy Citation Text show less
    References

    [1] D. R. Solli, C. Ropers, P. Koonath et al. Optical rogue waves. Nature, 450, 1054(2007).

    [2] D. Buccoliero, H. Steffensen, H. Ebendorff-Heidepriem et al. Midinfrared optical rogue waves in soft glass photonic crystal fiber. Opt. Express, 19, 17973(2011).

    [3] Q. Wang, X. Li. Collision properties of rogue waves in optical fiber. Opt. Commun., 435, 255(2019).

    [4] K. Hammani, B. Kibler, J. Fatome et al. Nonlinear spectral shaping and optical rogue events in fiber-based systems. Opt. Fiber Technol., 18, 248(2012).

    [5] R. Gupta, C. N. Kumar, V. M. Vyas et al. Manipulating rogue wave triplet in optical waveguides through tapering. Phys. Lett. A, 379, 314(2015).

    [6] C. D. Pelwan, A. Quandt, R. Warmbier. Onset times of long-lived rogue waves in an optical waveguide array. J. Opt. Soc. Am. A, 37, C67(2020).

    [7] A. Degasperis, S. Wabnitz, A. B. Aceves. Bragg grating rogue wave. Phys. Lett. A, 379, 1067(2015).

    [8] H. Kaur, A. Goyal et al. Generation and controlling of ultrashort self-similar solitons and rogue waves in inhomogeneous optical waveguide. Optik, 223, 165634(2020).

    [9] S. K. Gupta, A. K. Sarma. Periodic optical rogue waves (PORWs) in parity-time (PT) symmetric Bragg-grating structure. Europhys. Lett., 1620, 452(2014).

    [10] M. Onorato, S. Residori, U. Bortolozzo et al. Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep., 528, 47(2013).

    [11] N. N. Akhmediev, V. I. Korneev. Modulation instability and periodic solutions of the nonlinear Schrödinger equation. Theor. Math. Phys., 69, 1089(1986).

    [12] G. Genty, J. M. Dudley, B. J. Eggleton. Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime. Appl. Phys. B, 94, 187(2009).

    [13] J. M. Dudley, G. Genty, F. Dias et al. Modulation instability, Akhmediev breathers and continuous wave supercontinuum generation. Opt. Express, 17, 21497(2009).

    [14] C. Hermann-Avigliano, I. A. Salinas, D. A. Rivas et al. Spatial rogue waves in photorefractive SBN crystals. Opt. Lett., 44, 2807(2019).

    [15] Z. Chen, F. Li, C. Lou. Statistical study on rogue waves in Gaussian light field in saturated nonlinear media. Chin. Opt. Lett., 20, 081901(2022).

    [16] A. Katti, R. A. Yadav. Modulation instability of broad optical beams in unbiased photorefractive pyroelectric crystals. Chaos Solit. Fractals, 101, 20(2017).

    [17] A. V. Drozdovskii, B. A. Kalinikos, A. B. Ustinov et al. Spin-wave self-modulation instability in a perpendicularly magnetized magnonic crystal. J. Phys. Conf. Ser., 769, 012071(2016).

    [18] D. Gomila, R. Zambrini, G.-L. Oppo. Photonic band-gap inhibition of modulational instabilities. Phys. Rev. Lett., 92, 253904(2004).

    [19] S. Li, Y. Cheng, F. Chang. Generation and modulation of rogue waves on periodic background. Acta Photonica Sin., 49, 619001(2020).

    [20] D. Rivas, A. Szameit, R. A. Vicencio. Rogue waves in disordered 1D photonic lattices. Sci. Rep., 10, 13064(2020).

    [21] N. Zhu, Z. Liu, R. Guo et al. A method of easy fabrication of 2D light-induced nonlinear photonic lattices in self-defocusing LiNbO3:Fe crystal. Opt. Mater., 30, 527(2007).

    [22] J. He, S. Xu, K. Porsezian. N-order bright and dark rogue waves in a resonant erbium-doped fiber system. Phys. Rev. E, 86, 066603(2012).

    [23] M. G. Clerc, G. González-Cortés, M. Wilson. Extreme events induced by spatiotemporal chaos in experimental optical patterns. Opt. Lett., 41, 2711(2016).

    [24] F. Chen, M. Stepić, C. E. Rüter et al. Discrete diffraction and spatial gap solitons in photovoltaic LiNbO3 waveguide arrays. Opt. Express, 13, 4314(2005).