• Optoelectronics Letters
  • Vol. 20, Issue 9, 537 (2024)
Qihang WU, Zhuolin SHI, Jinglin HE, and Jianfeng and DONG*
Author Affiliations
  • Department of Electronic Information Science and Technology, Ningbo University, Ningbo 315211, China
  • show less
    DOI: 10.1007/s11801-024-3231-1 Cite this Article
    WU Qihang, SHI Zhuolin, HE Jinglin, and DONG Jianfeng. An all-dielectric chiral metasurface with circular dichroism and asymmetric transmission characteristics[J]. Optoelectronics Letters, 2024, 20(9): 537 Copy Citation Text show less
    References

    [1] KADIC M, MILTON G W, HECKE M, et al. 3D metamaterials[J]. Nature reviews physics, 2019, 1(3): 198-210.

    [2] SUN S L, HE Q, HAO J M, et al. Electromagnetic metasurfaces:physics and applications[J]. Advances in opticsand photonics, 2019, 11(2): 380-479.

    [3] KRUK S S, KIVSHAR Y S. Functional meta-optics and nanophotonics govern by Mie resonances[J]. ACS photonics, 2017, 4(11): 2638-2649.

    [4] KHORASANINEJAD M, CHEN W T, DEVLIN R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194.

    [5] DING F, ZHONG S, BOZHEVOLNYI S I. Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies[J]. Advanced optical materials, 2018, 6(9): 1701204.

    [6] ZHAO J X, SONG J L, ZHOU Y, et al. Switching between the functions of half-wave plate and quarter-wave plate simply by using a vanadium dioxide film in a terahertz metamaterial[J]. Chinese physics letters, 2020, 37(6): 064204.

    [7] CARRILLO S G C, NASH G R, HAYAT H, et al. Design of practicable phase-change metadevices for near-infrared absorber and modulator applications[J]. Optics express, 2016, 24(12): 13563-13573.

    [8] POGREBNYAKOV A V, BOSSARD J A, TURPIN J P. Reconfigurable near-IR metasurface based on Ge2Sb2Te5 phase-change material[J]. Optical materials express, 2018, 8(8): 2264-2275.

    [9] LI Y R, LUO J, LI X, et al. Switchable quarter-wave plate and half-wave plate based on phase-change metasurface[J]. IEEE photonics journal, 2020, 12(2): 4600410.

    [10] ZHANG Y, CHOU J B, LI J, et al. Broadband transparentoptical phase change materials for high-performance nonvolatile photonics[J]. Nature communications, 2019, 10(1): 4279.

    [11] ZHANG Q H, ZHANG Y F, LI J Y, et al. Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit[J].Optics letters, 2018, 43(1): 94-97.

    [12] MICHEL A K U, WUTTIG M, TAUBNER T. Design parameters for phase-change materials for nanostructure resonance tuning[J]. Advanced optical materials, 2017, 5(18): 1700261.

    [13] ZAMANI N, HATEF A, NADGARAN H. Temporal analysis of photo-thermally induced reconfigurability in a 1D gold grating filled with a phase change material[J]. Advanced theory and simulations, 2021, 5(2): 2100240.

    [14] KANG Q L, LI D K, GUO K, et al. Tunable thermal camouflage based on GST plasmonic metamaterial[J]. Nanomaterials, 2021, 11(2): 260.

    [15] DING F, YANG Y Q, BOZHEVOLNYI S I. Dynamic metasurfaces using phase-change chalcogenides[J]. Advanced optical materials, 2019, 7(14): 1801709. 1-1801709. 15.

    [16] HAO X R, ZHENG C L, LI J, et al. Optically tunable extrinsic chirality of single-layer metal metasurface for terahertz wave[J]. Optics communications, 2022, 512: 127554.

    [17] LIU D J, XIAO Z Y, MA X L, et al. Asymmetric transmission of linearly and circularly polarized waves in metamaterial due to symmetry-breaking[J]. Applied physics express, 2015, 8(5): 052001.

    [18] LIU J Y, LI Z C, LIU W W, et al. High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces[J]. Advanced optical materials, 2016, 4(12): 2028-2034.

    [19] LI X F, FENG R, DING W Q. Extremely high contrast asymmetric transmission with linear tunability in chiral metamaterials[J]. Journal of physics, D-applied physics, 2018, 51(14): 145304.

    [20] LI Y X, DONG G H, ZHAO R Q, et al. Dual-band asymmetric transmission and circular dichroism in hybrid coupled plasmonic metamaterials[J]. Journal of physics, D-applied physics, 2018, 51(28): 021903.

    [21] MA Z J, LI Y, LI Y, et al. All-dielectric planar chiral metasurface with gradient geometric phase[J]. Optics express, 2018, 26(5): 6067-6078.

    [22] ZHOU L, PENG Y H, WANG Y K, et al. Coexistence of circular dichroism and asymmetric transmission in a stretchable chiral metamaterial[J]. Journal of the optical society of America, B-optical physics, 2020, 37(12): 3763-3768.

    [23] LIU C J, HUANG Y Y, HU F R, et al. Giant asymmetric transmission and circular dichroism with angular tunability in chiral terahertz metamaterials[J]. Annalen der physik, 2020, 532(3): 1900398.

    [24] HAN B W, LI S J, LI Z Y, et al. Asymmetric transmission for dual-circularly and linearly polarized waves based on a chiral metasurface[J]. Optics express, 2021, 29(13): 19643-19654.

    [25] KHALIQ H S, KIM I, ZAHID A, et al. Giant chiro-optical responses in multipolar-resonances-based single-layer dielectric metasurfaces[J]. Photonics research,2021, 9(9): 1667-1674.

    [26] TAO X, QI L M, FU T, et al. A tunable dual-band asymmetric transmission metasurface with strong circulardichroism in the terahertz communication band[J]. Optics & laser technology, 2022, 150: 107932.

    [27] HUSSAIN S, JI R N, WANG S W. High-performance circular polarization modulation using a dielectric metasurface[J].Applied optics, 2023, 62(18): 4860-4865.

    [28] WANG L L, HUANG X J, LI M H, et al. Chirality selective metamaterial absorber with dual bands[J]. Optics express, 2019, 27(18): 25983-25993.

    WU Qihang, SHI Zhuolin, HE Jinglin, and DONG Jianfeng. An all-dielectric chiral metasurface with circular dichroism and asymmetric transmission characteristics[J]. Optoelectronics Letters, 2024, 20(9): 537
    Download Citation