• Optics and Precision Engineering
  • Vol. 27, Issue 12, 2555 (2019)
MA Yan1, ZHANG Chao-zi2,3, LIU Ye1, and ZHANG Zhe2,3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/ope.20192712.2555 Cite this Article
    MA Yan, ZHANG Chao-zi, LIU Ye, ZHANG Zhe. Polarization imaging of space target based on bicubic interpolation[J]. Optics and Precision Engineering, 2019, 27(12): 2555 Copy Citation Text show less
    References

    [1] ZALLAT J, GRABBLING P, TAKAKURA Y. Using polarimetric imaging for material classification [C].Proceedings 2003 International Conference on Image Processing, IEEE, 2003: II-827.

    [2] BEAVERS W I, TAPIA S, CHO J Y K. Photopolarimetric studies of resident space objects[C].Lunar and Planetary Science Conference. 1991, 22: 67-68.

    [3] SANCHEZ D J, GREGORY S A, STORM S L, et al.. Photopolarimetric measurements of geosynchronous satellites[C].Multifrequency Electronic/Photonic Devices and Systems for Dual-Use Applications. International Society for Optics and Photonics, 2001, 4490: 221-237.

    [4] BUSH K A, CROCKETT G A, BARNARD C C. Satellite discrimination from active and passive polarization signatures: simulation predictions using the TASAT satellite model[C].Polarization Analysis and Measurement IV. International Society for Optics and Photonics, 2002, 4481: 46-58.

    [5] LI M F, NIU J Y, MA L X. Feasibility analysis of space target detection based on infrared polarization properties [J].Journal of Applied Optics, 2013, 34(4): 653-657. (in Chinese)

    [6] YUAN B, GAO J, YANG F CH, et al.. Research on Polarized Optical Properties of Space Target Material [J]. Acta Optica Sinica, 2017, 46(1): 0116003-1-0116003-8. (in Chinese)

    [7] PANG S X. Space-based Detection of Space Debris by Photometric and Polarimetric Characteristics [D]. Xian: Xian Institute of Optics and Precision Mechanics, 2018. (in Chinese)

    [8] LIU J, XIA R Q, JIN W Q, et al.. Review of imaging polarimetry based on Stokes vector [J]. Optical Technique, 2013, 39(1):56-62. (in Chinese)

    [9] ZHANG ZH, LIU X Y, WANG J L, et al.. Division-of-time long-wave infrared high frame frequency polarization imaging experiment [J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(5):508-514. (in Chinese)

    [10] HAN Y, ZHAO K CH, YOU ZH. Development of rapid rotary polarization imaging detection devices[J]. Optics and Precision Engineering, 2018,26(10):2345-2354.(in Chinese)

    [11] ZHANG A ZH, LIU ZH L, ZOU X CH, et al.. Design of image scaling engine based bicubic interpolation algorithm [J]. Microelectronics & Computer, 2007, 24(1):49-51. (in Chinese)

    [12] LIAO Y B. Polarization Optics [M]. Beijing: Science Press, 2003. (in Chinese)

    [13] GENDRE L, FOULONNEAU A, BIGUE L. Imaging linear polarimetry using a single ferroelectric liquid crystal modulator [J]. Applied Optics, 2010, 49(25): 4687-4699.

    [14] HARNETT C K, CRAIGHEAD H G. Liquid-crystal micropolarizer array for polarization-difference imaging [J]. Applied Optics, 2002, 41(7): 1291-1296.

    [15] GAO S, GRUEV V. Bilinear and bicubic interpolation methods for division of focal plane polarimeters [J]. Optics Express, 2011, 19(27): 26161-26173.

    [16] LIANG J, JU H J, ZHANG W F, et al.. Review of optical polarimetric dehazing technique [J]. Acta Optica Sinica, 2017(4):9-21. (in Chinese)

    [17] AGAIAN S S, PANETTA K, GRIGORYAN A M. Transform-based image enhancement algorithms with performance measure [J]. Opt. Precision Eng., 2001, 10(3): 367-382.

    [18] FAN ZH G, SONG Q, DAI Q Q, et al.. Underwater target polarization recovery method based on global parameter estimation[J]. Optics and Precision Engineering, 2018, 26(7): 1621-1632. (in Chinese)

    [19] SOH L K, TSATSOULIS C. Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices [J]. IEEE Transactions on geoscience and remote sensing, 1999, 37(2): 780-795.