• Photonics Research
  • Vol. 13, Issue 5, 1408 (2025)
Fangze Deng1, Ke Ma1, Yumeng Ma1, Xiang Hou1..., Zhihua Han1, Yuchao Li1, Keke Cheng1, Yansheng Shao1, Chenglong Wang1, Meng Liu1, Huiyun Zhang1,2,* and Yuping Zhang1,3,*|Show fewer author(s)
Author Affiliations
  • 1Qingdao Key Laboratory of Terahertz Technology, College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
  • 2e-mail: sdust_thz@126.com
  • 3e-mail: sdust_thz@163.com
  • show less
    DOI: 10.1364/PRJ.555214 Cite this Article Set citation alerts
    Fangze Deng, Ke Ma, Yumeng Ma, Xiang Hou, Zhihua Han, Yuchao Li, Keke Cheng, Yansheng Shao, Chenglong Wang, Meng Liu, Huiyun Zhang, Yuping Zhang, "Dual-channel tunable multipolarization adapted terahertz spatiotemporal vortices generating device," Photonics Res. 13, 1408 (2025) Copy Citation Text show less
    References

    [1] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [2] E. Maguid, I. Yulevich, D. Veksler. Photonic spin-controlled multifunctional shared aperture antenna array. Science, 352, 1202-1206(2016).

    [3] L. Paterson, M. P. MacDonald, J. Arlt. Controlled rotation of optically trapped microscopic particles. Science, 292, 912-914(2001).

    [4] K. I. Willig, S. O. Rizzoli, V. Westphal. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature, 440, 935-939(2006).

    [5] N. Bozinovic, Y. Yue, Y. Ren. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [6] R. C. Devlin, A. Ambrosio, N. A. Rubin. Arbitrary spin-to-orbital angular momentum conversion of light. Science, 358, 896-901(2017).

    [7] Y. Shen, X. Wang, Z. Xie. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 8, 90(2019).

    [8] K. R. Patel, T. Paramanathan. Exploring the binding of mitoxantrone to DNA using optical tweezers. Biophys. J., 122, 75A(2023).

    [9] X. Y. Fang, H. R. Ren, K. Y. Li. Nanophotonic manipulation of optical angular momentum for high-dimensional information optics. Adv. Opt. Photonics, 13, 772-833(2021).

    [10] N. Lal, S. Mishra, A. Rani. Polarization-orbital angular momentum duality assisted entanglement observation for indistinguishable photons. Quantum Inf. Process., 22, 90(2023).

    [11] H. Yao, Z. Sun, L. Liang. Hybrid metasurface using graphene/graphitic carbon nitride heterojunctions for ultrasensitive terahertz biosensors with tunable energy band structure. Photonics Res., 11, 858-868(2023).

    [12] H. Yao, M. Yang, X. Yan. Patterned graphene and terahertz metasurface-enabled multidimensional ultra-sensitive flexible biosensors and bio-assisted optical modulation amplification. Results Phys., 40, 105884(2022).

    [13] C. Huang, L. Liang, P. Chang. Terahertz liquid biosensor based on a graphene metasurface for ultrasensitive detection with a quasi-bound state in the continuum. Adv. Mater., 36, 2310493(2024).

    [14] L. Liang, Y. Zhang, C. Huang. Metamaterial flexible GaN/graphene heterostructure-enabled multidimensional terahertz sensor for femtogram-level detection of aspartic acid. IEEE Sensors J., 23, 16814-16822(2023).

    [15] H. Yao, Z. Sun, X. Yan. Ultrasensitive, light-induced reversible multidimensional biosensing using THz metasurfaces hybridized with patterned graphene and perovskite. Nanophotonics, 11, 1219-1230(2022).

    [16] K. Y. Bliokh, F. Nori. Spatiotemporal vortex beams and angular momentum. Phys. Rev. A, 86, 033824(2012).

    [17] M. A. Porras. Transverse orbital angular momentum of spatiotemporal optical vortices. Prog. Electromagn. Res, 177, 95-105(2023).

    [18] N. Jhajj, I. Larkin, E. W. Rosenthal. Spatiotemporal optical vortices. Phys. Rev. X, 6, 031037(2016).

    [19] S. W. Hancock, S. Zahedpour, A. Goffin. Freespace propagation of spatiotemporal optical vortices. Optica, 6, 1547-1553(2019).

    [20] S. W. Hancock, S. Zahedpour, H. M. Milchberg. Mode structure and orbital angular momentum of spatiotemporal optical vortex pulses. Phys. Rev. Lett., 127, 193901(2021).

    [21] Q. Cao, J. Chen, K. Lu. Nonspreading Bessel spatiotemporal optical vortices. Sci. Bull., 67, 133-140(2022).

    [22] M. Yessenov, L. A. Hall, K. L. Schepler. Spacetime wave packets. Adv. Opt. Photonics, 14, 455-570(2022).

    [23] N. Dror, B. A. Malomed. Symmetric and asymmetric solitons and vortices in linearly coupled two-dimensional waveguides with the cubicquintic nonlinearity. Phys. D, 240, 526-541(2011).

    [24] Y. Shen, Q. Zhan, L. G. Wright. Roadmap on spatiotemporal light fields. J. Opt., 25, 093001(2023).

    [25] A. Chong, C. Wan, J. Chen. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat. Photonics, 14, 350-354(2020).

    [26] H. Wang, C. Guo, W. Jin. Engineering arbitrarily oriented spatiotemporal optical vortices using transmission nodal lines. Optica, 8, 966-971(2021).

    [27] H. Ge, S. Liu, X.-Y. Xu. Spatiotemporal acoustic vortex beams with transverse orbital angular momentum. Phys. Rev. Lett., 131, 014001(2023).

    [28] J. Huang, J. Zhang, T. Zhu. Spatiotemporal differentiators generating optical vortices with transverse orbital angular momentum and detecting sharp change of pulse envelope. Laser Photonics Rev., 16, 2100357(2022).

    [29] W. Liu, J. Wang, Y. Tang. Exploiting topological darkness in photonic crystal slabs for spatiotemporal vortex generation. Nano Lett., 24, 943-949(2024).

    [30] A. I. Kashapov, E. A. Bezus, D. A. Bykov. Plasmonic generation of spatiotemporal optical vortices. Photonics, 10, 109(2023).

    [31] H. Zhang, Y. Sun, J. Huang. Topologically crafted spatiotemporal vortices in acoustics. Nat. Commun., 14, 6238(2023).

    [32] S. Divitt, W. Zhu, C. Zhang. Ultrafast optical pulse shaping using dielectric metasurfaces. Science, 364, 890-894(2019).

    [33] A. M. Shaltout, K. G. Lagoudakis, J. van de Groep. Spatiotemporal light control with frequency gradient metasurfaces. Science, 365, 374-377(2019).

    [34] X. Dong, X. Luo, Y. Zhou. Switchable broadband and wide-angular terahertz asymmetric transmission based on a hybrid metal-VO2 metasurface. Opt. Express, 28, 30675(2020).

    [35] Q. Z. Wang, S. Y. Liu, G. J. Ren. Multi-parameter tunable terahertz absorber based on graphene and vanadium dioxide. Opt. Commun., 494, 127050(2021).

    [36] Q.-Y. Wen, H. W. Zhang, Q. H. Yang. Terahertz metamaterials with VO2 cut-wires for thermal tenability. Appl. Phys. Lett., 97, 021111(2010).

    [37] S. Fan, W. Suh, J. D. Joannopoulos. Temporal coupled-mode theory for the Fano resonance in the optical resonator. J. Opt. Soc. Am., 20, 569-572(2003).

    [38] W. Suh, Z. Wang, S. Fan. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J. Quantum Electron., 40, 1511-1518(2004).

    [39] S. Fan, J. D. Joannopoulos. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B, 65, 235112(2002).

    [40] P. Huo, W. Chen, Z. Zhang. Observation of spatiotemporal optical vortices enabled by symmetry-breaking slanted nanograting. Nat. Commun., 15, 3055(2024).

    [41] P. U. Jepsen, B. M. Fischer, A. Thoman. Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy. Phys. Rev. B, 74, 205103(2006).

    Fangze Deng, Ke Ma, Yumeng Ma, Xiang Hou, Zhihua Han, Yuchao Li, Keke Cheng, Yansheng Shao, Chenglong Wang, Meng Liu, Huiyun Zhang, Yuping Zhang, "Dual-channel tunable multipolarization adapted terahertz spatiotemporal vortices generating device," Photonics Res. 13, 1408 (2025)
    Download Citation