• Acta Photonica Sinica
  • Vol. 51, Issue 1, 0151103 (2022)
Xinlei ZHU1, Jiayi YU2, and Yangjian CAI1、2、*
Author Affiliations
  • 1School of Physical Science and Technology,Soochow University,Suzhou,Jiangsu 215006,China
  • 2School of Physics and Electronics,Shandong Normal University,Jinan 250014,China
  • show less
    DOI: 10.3788/gzxb20225101.0151103 Cite this Article
    Xinlei ZHU, Jiayi YU, Yangjian CAI. Research Progress of Generation of Partially Coherent Beams with Prescribed Correlation Structures(Invited)[J]. Acta Photonica Sinica, 2022, 51(1): 0151103 Copy Citation Text show less
    References

    [1] L MANDEL, E WOLF. Optical coherence and quantum optics(1995).

    [2] Yangjian CAI, Yahong CHEN, Jjiayi YU et al. Generation of partially coherent beams. Progress in Optics, 62, 157-223(2017).

    [3] Yangjian CAI, Yahong CHEN, Fei WANG. Generation and propagation of partially coherent beams with nonconventional correlation functions: a review. Journal of Optical Society of America A, 31, 2083-2096(2014).

    [4] Yahong CHEN, A NORRMAN, S A PONOMARENKO et al. Optical coherence and electromagnetic surface waves. Progress in Optics, 65, 105-172(2020).

    [5] Deming PENG, Zhaohui HUANG, Yonglei LIU et al. Optical coherence encryption with structured random light. PhotoniX, 2, 1-15(2021).

    [6] O KOROTKOVA, G GBUR. Applications of optical coherence theory. Progress in Optics, 65, 43-104(2020).

    [7] T. XIV YOUNG. An account of some cases of the production of colours, not hitherto described. Philosophical Transactions of the Royal Society of London, 387-397(1802).

    [8] A C SCHELL. The multiple plate antenna(1961).

    [9] F GORI, G GUATTARI, C PADOVANI. Modal expansion for J0-correlated Schell-model sources. Optics Communications, 64, 311-316(1987).

    [10] S A PONOMARENKO. A class of partially coherent beams carrying optical vortices. Journal of Optical Society of America A, 18, 150-156(2001).

    [11] F GORI, M SANTARSIERO. Devising genuine spatial correlation functions. Optics Letters, 32, 3531-3533(2007).

    [12] E WOLF. Introduction to the Theory of Coherence and Polarization of Light(2007).

    [13] F GORI. Matrix treatment for partially polarized, partially coherent beams. Optics Letters, 23, 241-243(1998).

    [14] F GORI, V RAMÍREZ-SÁNCHEZ, M SANTARSIERO et al. On genuine cross-spectral density matrices. Journal of Optics A: Pure and Applied Optics, 11, 085706(2009).

    [15] S SAHIN, O KOROTKOVA. Light sources generating far fields with tunable flat profiles. Optics Letters, 37, 2970-2972(2012).

    [16] Yahong CHEN, Jiaxin GU, Fei WANG et al. Self-splitting properties of a Hermite-Gaussian correlated Schell-model beam. Physical Review A, 91, 013823(2015).

    [17] O KOROTKOVA, S SAHIN, E SHCHEPAKINA. Multi-gaussian schell-model beams. Journal of Optical Society of America A, 29, 2159-2164(2012).

    [18] Zhangrong MEI, O KOROTKOVA. Random sources generating ring-shaped beams. Optics Letters, 38, 91-93(2013).

    [19] Zhangrong MEI, O KOROTKOVA. Cosine-Gaussian Schell-model sources. Optics Letters, 38, 2578-2580(2013).

    [20] Fei WANG, Chunhao LIANG, Yangsheng YUAN et al. Generalized multi-Gaussian correlated Schell-model beam: from theory to experiment. Optics Express, 22, 23456-23464(2014).

    [21] Yahong CHEN, Lin LIU, Fei WANG et al. Elliptical Laguerre-Gaussian correlated Schell-model beam. Optics Express, 22, 13975-13987(2014).

    [22] Yahong CHEN, Fei WANG, Chengliang ZHAO et al. Experimental demonstration of a Laguerre-Gaussian correlated Schell-model vortex beam. Optics Express, 22, 5826-5838(2014).

    [23] Chunhao LIANG, Fei WANG, Xianlong LIU et al. Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry. Optics Letters, 39, 769-772(2014).

    [24] Chaoliang DING, O KOROTKOVA, Yongtao ZHANG et al. Cosine-Gaussian correlated Schell-model pulsed beams. Optics Express, 22, 931-942(2014).

    [25] Liyuan MA, S A PONOMARENKO. Optical coherence gratings and lattices. Optics Letters, 39, 6656-6659(2014).

    [26] Liyuan MA, S A PONOMARENKO. Free-space propagation of optical coherence lattices and periodicity reciprocity. Optics Express, 23, 1848-1856(2015).

    [27] Yahong CHEN, Jiayi YU, Yangsheng YUAN et al. Theoretical and experimental studies of a rectangular Laguerre–Gaussian-correlated Schell-model beam. Applied Physics B, 122, 31(2016).

    [28] Yahong CHEN, S A PONOMARENKO, Yangjian CAI. Experimental generation of optical coherence lattices. Applied Physics Letters, 109, 061107(2016).

    [29] Yahong CHEN, S A PONOMARENKO, Yangjian CAI. Self-steering partially coherent beams. Scientific Reports, 7, 1-7(2017).

    [30] Chunhao LIANG, Xinlei ZHU, Chenkun MI et al. High-quality partially coherent Bessel beam array generation. Optics Letters, 43, 3188-3191(2018).

    [31] Chunhao LIANG, R KHOSRAVI, Xiaoxiong LIANG et al. Standard and elegant higher-order Laguerre–Gaussian correlated Schell-model beams. Journal of Optics, 21, 085607(2019).

    [32] R LIN, Hancheng YU, Xinlei ZHU et al. The evolution of spectral intensity and orbital angular momentum of twisted Hermite Gaussian schell model beams in turbulence. Optics Express, 28, 7152-7164(2020).

    [33] Yonglei LIU, Rong LIN, Fei WANG et al. Propagation properties of Laguerre-Gaussian Schell-model beams with a twist phase. Journal of Quantitative Spectroscopy and Radiative Transfer, 264, 107556(2021).

    [34] H LAJUNEN, T SAASTAMOINEN. Propagation characteristics of partially coherent beams with spatially varying correlations. Optics Letters, 36, 4104-4106(2011).

    [35] H LAJUNEN, T SAASTAMOINEN. Non-uniformly correlated partially coherent pulses. Optics Express, 21, 190-195(2013).

    [36] Zhisong TONG, O KOROTKOVA. Nonuniformly correlated light beams in uniformly correlated media. Optics Letters, 37, 3240-3242(2012).

    [37] Yalong GU, G GBUR. Scintillation of pseudo-Bessel correlated beams in atmospheric turbulence. Journal of Optical Society of America A, 27, 2621-2629(2010).

    [38] Jiayi YU, Yahong CHEN, Yangjian CAI. Nonuniform Laguerre-Gaussian correlated beam and its propagation properties. Acta Physica Sinica, 65, 214202(2016).

    [39] Jiayi YU, Fei WANG, Lin LIU et al. Propagation properties of Hermite non-uniformly correlated beams in turbulence. Optics Express, 26, 16333-16343(2018).

    [40] Jiayi YU, Yangjian CAI, G GBUR. Rectangular Hermite non-uniformly correlated beams and its propagation properties. Optics Express, 26, 27894-27906(2018).

    [41] Xuechun ZHAO, Lei ZHANG, Rong LIN et al. Hermite Non-Uniformly Correlated Array Beams and Its Propagation Properties. Chinese Physics Letters, 37, 124202(2020).

    [42] Jia XU, Miaomiao TANG, Daomu ZHAO. Propagation of electromagnetic non-uniformly correlated beams in the oceanic turbulence. Optics Communications, 331, 1-5(2014).

    [43] Yalong GU, G GBUR. Scintillation of nonuniformly correlated beams in atmospheric turbulence. Optics Letters, 38, 1395-1397(2013).

    [44] Qiwen ZHAN. Cylindrical vector beams: from mathematical concepts to applications. Advances in Optics and Photonics, 1, 1-57(2009).

    [45] Chunhao LIANG, Chenkun MI, Fei WANG et al. Vector optical coherence lattices generating controllable far-field beam profiles. Optics Express, 25, 9872-9885(2017).

    [46] Yahong CHEN, Fei WANG, Lin LIU et al. Generation and propagation of a partially coherent vector beam with special correlation functions. Physical Review A, 89, 013801(2014).

    [47] Zhisong TONG, O KOROTKOVA. Electromagnetic nonuniformly correlated beams. JOSA A, 29, 2154-2158(2012).

    [48] Zhangrong MEI, Zhisong TONG, O KOROTKOVA. Electromagnetic non-uniformly correlated beams in turbulent atmosphere. Optics Express, 20, 26458-26463(2012).

    [49] Jiayi YU, Xinlei ZHU, Shuqin LIN et al. Vector partially coherent beams with prescribed non-uniform correlation structure. Optics Letters, 45, 3824-3827(2020).

    [50] Xinlei ZHU, Jiayi YU, Fei WANG et al. Synthesis of vector nonuniformly correlated light beams by a single digital mirror device. Optics Letters, 46, 2996-2999(2021).

    [51] Zhangrong MEI, O KOROTKOVA, E SHCHEPAKINA. Electromagnetic multi-Gaussian Schell-model beams. Journal of Optics, 15, 025705(2012).

    [52] Shijun ZHU, Yahong CHEN, Jing WANG et al. Generation and propagation of a vector cosine-Gaussian correlated beam with radial polarization. Optics Express, 23, 33099-33115(2015).

    [53] Yahong CHEN, Fei WANG, Jiayi YU et al. Vector Hermite-Gaussian correlated Schell-model beam. Optics Express, 24, 15232-15250(2016).

    [54] Haidan MAO, Yahong CHEN, Chunhao LIANG et al. Self-steering partially coherent vector beams. Optics Express, 27, 14353-14368(2019).

    [55] P DE SANTIS, F GORI, G GUATTARI et al. An example of a Collett-Wolf source. Optics Communications, 29, 256-260(1979).

    [56] Fei WANG, Xianlong LIU, Yangsheng YUAN et al. Experimental generation of partially coherent beams with different complex degrees of coherence. Optics Letters, 38, 1814-1816(2013).

    [57] D VOELZ, Xifeng XIAO, O KOROTKOVA. Numerical modeling of Schell-model beams with arbitrary far-field patterns. Optics Letters, 40, 352-355(2015).

    [58] IV M W HYDE, S BASU, X XIAO et al. Producing any desired far-field mean irradiance pattern using a partially-coherent Schell-model source. Journal of Optics, 17, 055607(2015).

    [59] IV M W HYDE, S BASU, D G VOELZ et al. Experimentally generating any desired partially coherent Schell-model source using phase-only control. Journal of Applied Physics, 118, 093102(2015).

    [60] M W HYDE. Stochastic complex transmittance screens for synthesizing general partially coherent sources. Journal of Optical Society of America A, 37, 257-264(2020).

    [61] IV M W HYDE. Generating electromagnetic Schell-model sources using complex screens with spatially varying auto-and cross-correlation functions. Results in Physics, 15, 102663(2019).

    [62] M W HYDE, Xifeng XIAO, D G VOELZ. Generating electromagnetic nonuniformly correlated beams. Optics Letters, 44, 5719-5722(2019).

    [63] IV M W HYDE, S BOSE-PILLAI, D G VOELZ et al. Generation of vector partially coherent optical sources using phase-only spatial light modulators. Physical Review Applied, 6, 064030(2016).

    [64] D S WATKINS. Fundamentals of matrix computations(2004).

    [65] A S OSTROVSKY, J GARCÍA-GARCÍA, C RICKENSTORFF-PARRAO et al. Partially coherent diffraction-free vortex beams with a Bessel-mode structure. Optics Letters, 42, 5182-5185(2017).

    [66] Xi CHEN, Jia LI, S M H RAFSANJANI et al. Synthesis of Im-Bessel correlated beams via coherent modes. Optics Letters, 43, 3590-3593(2018).

    [67] Xinlei ZHU, Fei WANG, Chengliang ZHAO et al. Experimental realization of dark and antidark diffraction-free beams. Optics Letters, 44, 2260-2263(2019).

    [68] R MARTÍNEZ-HERRERO, P M MEJÍAS, F GORI. Genuine cross-spectral densities and pseudo-modal expansions. Optics Letters, 34, 1399-1401(2009).

    [69] IV M W HYDE, S BOSE-PILLAI, Xifeng XIAO et al. A fast and efficient method for producing partially coherent sources. Journal of Optics, 19, 025601(2016).

    [70] IV M W HYDE, S R BOSE-PILLAI, R A WOOD. Synthesis of non-uniformly correlated partially coherent sources using a deformable mirror. Applied Physics Letters, 111, 101106(2017).

    [71] Xinlei ZHU, Jiayi YU, Yahong Chen et al. Experimental synthesis of random light sources with circular coherence by digital micro-mirror device. Applied Physics Letters, 117, 121102(2020).

    Xinlei ZHU, Jiayi YU, Yangjian CAI. Research Progress of Generation of Partially Coherent Beams with Prescribed Correlation Structures(Invited)[J]. Acta Photonica Sinica, 2022, 51(1): 0151103
    Download Citation