• Chinese Journal of Lasers
  • Vol. 44, Issue 6, 601007 (2017)
Guo Yongrui1、*, Lu Huadong1、2, Su Jing1、2, and Peng Kunchi1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/cjl201744.0601007 Cite this Article Set citation alerts
    Guo Yongrui, Lu Huadong, Su Jing, Peng Kunchi. Investigation of Hundred-Watt All-Solid-State Continuous-Wave Single-Frequency 1064 nm Laser[J]. Chinese Journal of Lasers, 2017, 44(6): 601007 Copy Citation Text show less
    References

    [1] Zhang Zhongping, Zhang Haifeng, Wu Zhibo, et al. Experiment of laser ranging to space debris based on high power solid-state laser system at 200 Hz repetition rate[J]. Chinese J Lasers, 2014, 41(s1): s108005.

    [2] Qu Qiuzhi, Wang Bin, Lü Desheng, et al. Principle and progress of cold atom clock in space[J]. Chinese J Lasers, 2015, 42 (9): 0902006.

    [3] Liu Lei, Li Xiao, Xiao Hu, et al. Mid-infrared, singly resonant and continuous-wave optical parametric oscillator pumped by a single-frequency fiber laser[J]. Chinese J Lasers, 2012, 39(1): 0201001.

    [4] Wang Fei, Shen Deyuan, Long Jingyu, et al. High-power widely-tunable Tm:fiber master oscillator power amplifier[J]. Chinese J Lasers, 2013, 40(6): 0602009.

    [5] Jiang Jiaxin, Li Shiguang, Ma Xiuhua, et al. Investigation on spectral purity of injection seeding single frequency pulsed optical parametric oscillator[J]. Chinese J Lasers, 2015, 42(7): 0702011.

    [6] Antognini A, Schuhmann K, Amaro F D, et al. Thin-disk Yb∶YAG oscillator-amplifier laser, ASE, and effective Yb∶YAG lifetime[J]. IEEE Journal of Quantum Electronics, 2009, 45(8): 993-1005.

    [7] Sheng Lifeng, Jiang Hongbo, Zhao Zhigang, et al. Experimental study of picosecond laser amplifier based on grazing lncidence Nd∶YVO4 slab geometry[J]. Chinese J Lasers, 2016, 43(11): 1101104.

    [8] Chen X M, Xu L, Hu H, et al. High-efficiency, high-average-power, CW Yb∶YAG zigzag slab master oscillator power amplifier at room temperature[J]. Optics Express, 2016, 24(21): 24517-24523.

    [9] Jeong Y, Nilsson J, Sahu J K, et al. Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power.[J]. Optics Letters, 2005, 30(5): 459-461.

    [10] Wang Xiaolin, Zhang Hanwei, Tao Rumao, et al. Laser diode pumped 4.1 kW all-fiber laser with master oscillator power amplification configuration[J]. Chinese J Lasers, 2016, 43(5): 0502002.

    [11] Frede M, Wilhelm R, Fallnich C, et al. 213 W linearly polarized fundamental mode Nd∶YAG ring laser[C]. Conference on Lasers and Electro-Optics, 2004: 1001-1002.

    [12] Takeno K,Ozeki T, Moriwaki S, et al. 100 W, single-frequency operation of an injection-locked Nd∶YAG laser[J]. Optics Letters, 2005, 30(16): 2110-2112.

    [13] Kane T J, Byer R L. Monolithic, unidirectional single-mode Nd∶YAG ring laser[J]. Optics Letters, 1985, 10(2): 65-67.

    [14] Willke B, Danzmann K, Frede M, et al. Stabilized lasers for advanced gravitational wave detectors[J]. Classical and Quantum Gravity, 2008, 25: 114040.

    [15] Frede M, Schulz B, Wilhelm R, et al. Fundamental mode, single-frequency laser amplifier for gravitational wave detectors[J]. Optics Express, 2007, 15(2): 459-465.

    [16] Lu H D, Su J, Zheng Y H, et al. Physical conditions of single-longitudinal-mode operation for high-power all-solid-state lasers[J]. Optics Letters, 2014, 39(5): 1117-1120.

    [17] Lu H D, Guo Y R, Peng K C. Intensity noise manipulation of a single-frequency laser with high output power by intracavity nonlinear loss[J]. Optics Letters, 2015, 40(22): 5196-5199.

    [18] Jin P X, Lu H D, Su J, et al. Scheme for improving laser stability via feedback control of intracavity nonlinear loss[J]. Applied Optics, 2016, 55(13): 3478-3482.

    [19] Mcdonagh L, Wallenstein R, Knappe R, et al. High-efficiency 60 W TEM00 Nd∶YVO4 oscillator pumped at 888 nm[J]. Optics Letters, 2006, 31(22): 3297-3299.

    [20] Wang Y J, Zheng Y H, Shi Z, et al. High-power single-frequency Nd∶YVO4 green laser by self-compensation of astigmatisms[J]. Laser Physics Letters, 2012, 9(7): 506-510.

    [21] Zheng Y H, Li F Q, Wang Y J, et al. High-stability single-frequency green laser with a wedge Nd∶YVO4 as a polarizing beam splitter[J]. Optics Communications, 2010, 283(2): 309-312.

    [22] Délen X, Balembois F, Georges P. Design of a high gain single stage and single pass Nd∶YVO4 passive picosecond amplifier[J]. Journal of the Optical Society of America B, 2012, 29(9): 2339-2346.

    [23] Délen X, Balembois F, Georges P. Direct amplification of a nanosecond laser diode in a high gain diode-pumped Nd∶YVO4 amplifier[J]. Optics Letters, 2014, 39(4): 997-1000.

    [24] Chen Y F, Huang T M, Kao C F, et al. Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect[J]. IEEE Journal of Quantum Electronics, 1997, 33(8): 1424-1429.

    [25] Koechner W. Solid-state laser engineering[M]. 6th ed. America: Springer-Verlag, 2006: 54-73.

    [26] Zhou Bingkun, Gao Yizhi, Chen Tirong, et al. Laser theory[M]. 6th ed. Beijing: National Defence Industry Press, 2010: 188.

    [27] Han K Z, Ning J, Zhang B T, et al. High power single-frequency Innoslab amplifier[J]. Applied Optics, 2016, 55(20): 5341-5344.

    CLP Journals

    [1] Zhang Lianping, Yin Guoling, Li Fengqin, Shi Zhu, Lu Huadong. All-Solid-State Tunable Ti∶Sapphire Laser with High-Power and Single-Frequency at 900 nm[J]. Chinese Journal of Lasers, 2017, 44(12): 1201002

    Guo Yongrui, Lu Huadong, Su Jing, Peng Kunchi. Investigation of Hundred-Watt All-Solid-State Continuous-Wave Single-Frequency 1064 nm Laser[J]. Chinese Journal of Lasers, 2017, 44(6): 601007
    Download Citation