• Chinese Optics Letters
  • Vol. 22, Issue 1, 011203 (2024)
Guanming Xie1,2, Sanhong Wang3, Yueqiang Zhang1,2,*, You Li4..., Biao Hu1,2, Yu Fu1,2 and Qifeng Yu1,2,5|Show fewer author(s)
Author Affiliations
  • 1Institute of Intelligent Optical Measurement and Detection, Shenzhen University, Shenzhen 518060, China
  • 2College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 3Shenzhen Sincevision Technology Co., Ltd., Shenzhen 518055, China
  • 4National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China
  • 5College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.3788/COL202422.011203 Cite this Article Set citation alerts
    Guanming Xie, Sanhong Wang, Yueqiang Zhang, You Li, Biao Hu, Yu Fu, Qifeng Yu, "Welding depth measurement for different mode lasers using optical coherence tomography," Chin. Opt. Lett. 22, 011203 (2024) Copy Citation Text show less
    References

    [1] R. Olsson, I. Eriksson, J. Powell et al. Challenges to the interpretation of the electromagnetic feedback from laser welding. Opt. Lasers Eng., 49, 188(2011).

    [2] C.-H. Kim, D.-C. Ahn. Coaxial monitoring of keyhole during Yb:YAG laser welding. Opt. Laser Technol., 44, 1874(2012).

    [3] H. Gu, W. W. Duley. A statistical approach to acoustic monitoring of laser welding. J. Phys. D: Appl. Phys., 29, 556(1996).

    [4] P. J. Webster, L. G. Wright, Y. Ji et al. Automatic laser welding and milling with in situ inline coherent imaging. Opt. Lett., 39, 6217(2014).

    [5] T. Bautze, M. Kogel‐Hollacher. Keyhole depth is just a distance: the IDM sensor improves laser welding processes. Laser Tech. J., 11, 39(2014).

    [6] L. Zhu, Y. Wang, Y. Yuan et al. Spectral domain optical coherence tomography with sub-micrometer sensitivity for measurement of central corneal thickness. Chin. Opt. Lett., 17, 041701(2019).

    [7] M. Wan, S. Liang, X. Li et al. Dual-beam delay-encoded all fiber Doppler optical coherence tomography for in vivo measurement of retinal blood flow. Chin. Opt. Lett., 20, 011701(2022).

    [8] N. D. Dupriez, C. Truckenbrodt. OCT for efficient high quality laser welding: high‐speed, high‐resolution online seam tracking, monitoring and quality control. Laser Tech. J., 13, 37(2016).

    [9] C. Stadter, M. Schmoeller, M. Zeitler et al. Process control and quality assurance in remote laser beam welding by optical coherence tomography. J. Laser Appl., 31, 022408(2019).

    [10] L. Huang, X. Hua, D. Wu et al. Numerical study of keyhole instability and porosity formation mechanism in laser welding of aluminum alloy and steel. J. Mater. Process. Technol., 252, 421(2018).

    [11] M. Boley, F. Fetzer, R. Weber et al. Statistical evaluation method to determine the laser welding depth by optical coherence tomography. Opt. Lasers Eng., 119, 56(2019).

    [12] C. Mittelstädt, T. Mattulat, T. Seefeld et al. Novel approach for weld depth determination using optical coherence tomography measurement in laser deep penetration welding of aluminum and steel. J. Laser Appl., 31, 022007(2019).

    [13] G. Xie, S. Wang, Y. Zhang et al. Laser welding depth monitoring method based on optical coherence tomography. Acta Opt. Sin., 43, 1114002(2023).

    [14] G. Xie, S. Wang, Y. Zhang et al. An efficient method for laser welding depth determination using optical coherence tomography. Sensors, 23, 5223(2023).

    [15] M. R. Maina, Y. Okamoto, A. Okada et al. High surface quality welding of aluminum using adjustable ring-mode fiber laser. J. Mater. Process. Technol., 258, 180(2018).

    [16] L. Wang, M. Yao, X. Gao et al. Keyhole stability and surface quality during novel adjustable-ring mode laser (ARM) welding of aluminum alloy. Opt. Laser Technol., 161, 109202(2023).

    [17] M. Sokolov, P. Franciosa, T. Sun et al. Applying optical coherence tomography for weld depth monitoring in remote laser welding of automotive battery tab connectors. J. Laser Appl., 33, 012028(2021).

    [18] T. J. Krause, T. R. Allen, J. M. Fraser. Self-witnessing coherent imaging for artifact removal and noise filtering. Opt. Lasers Eng., 151, 106936(2022).

    [19] M. Schmoeller, C. Stadter, S. Liebl et al. Inline weld depth measurement for high brilliance laser beam sources using optical coherence tomography. J. Laser Appl., 31, 022409(2019).

    Guanming Xie, Sanhong Wang, Yueqiang Zhang, You Li, Biao Hu, Yu Fu, Qifeng Yu, "Welding depth measurement for different mode lasers using optical coherence tomography," Chin. Opt. Lett. 22, 011203 (2024)
    Download Citation