• NUCLEAR TECHNIQUES
  • Vol. 46, Issue 11, 110505 (2023)
Lin TANG1、3, Shuang ZHOU1, Xianli LIAO1、2, Ze LIU1, and Bo LI1、*
Author Affiliations
  • 1College of Electronic Information and Electrical Engineering, Chengdu University, Chengdu 610106, China
  • 2School of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, China
  • 3School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
  • show less
    DOI: 10.11889/j.0253-3219.2023.hjs.46.110505 Cite this Article
    Lin TANG, Shuang ZHOU, Xianli LIAO, Ze LIU, Bo LI. Truncated pulse height estimator based on an improved UNet model[J]. NUCLEAR TECHNIQUES, 2023, 46(11): 110505 Copy Citation Text show less
    References

    [1] Tang L, Yu J, Zhou J B et al. A new method for removing false peaks to obtain a precise X-ray spectrum[J]. Applied Radiation and Isotopes, 135, 171-176(2018).

    [2] Tang L, Zhou J B, Fang F et al. Counting-loss correction for X-ray spectra using the pulse-repairing method[J]. Journal of Synchrotron Radiation, 25, 1760-1767(2018).

    [3] Wang M, Hong X, Zhou J B et al. Rising time restoration for nuclear pulse using a mathematic model[J]. Applied Radiation and Isotopes, 137, 280-284(2018).

    [4] Tang L, Zhao W D, Yu S K et al. Optimization design of X-ray spectrum data processing platform[J]. Spectroscopy And Spectral Analysis, 41, 763-767(2021).

    [5] Lee M J, Lee D, Ko E et al. Pulse pileup correction method for gamma-ray spectroscopy in high radiation fields[J]. Nuclear Engineering and Technology, 52, 1029-1035(2020).

    [6] Liu B Q, Liu M Z, He M F et al. Model-based pileup events correction via Kalman-filter tunnels[J]. IEEE Transactions on Nuclear Science, 66, 528-535(2019).

    [7] YU Nian, XU Yupeng, CAI Yanke et al. Simulation study on time resolution optimization of silicon drift detector[J]. Nuclear Techniques, 44, 040404(2021).

    [8] HUANG Yuyan, GONG Hui, LI Jianmin. Real time trapezoidal shaping algorithm at high count rates[J]. Journal of Tsinghua University (Science and Technology), 57, 521-524(2017).

    [9] Kantor M Y, Sidorov A V. Detection of true Gaussian shaped pulses at high count rates[J]. Journal of Instrumentation, 15, P06015(2020).

    [10] Liu Y, Wang M, Wan W J et al. Counting-loss correction method based on dual-exponential impulse shaping[J]. Journal of Synchrotron Radiation, 27, 1609-1613(2020).

    [11] Liu Y Y, Zhang J L, Liu L F et al. Implementation of real-time digital CR-RCm shaping filter on FPGA for gamma-ray spectroscopy[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 906, 1-9(2018).

    [12] Hong X, Wang H P, Zhou J B et al. Peak tailing cancellation techniques for digital CR-(RC)n filter[J]. Applied Radiation and Isotopes: Including Data, Instrumentation and Methods for Use in Agriculture, Industry and Medicine, 167, 109471(2021).

    [13] Hong X, Li L, Wu J L et al. An adaptive digital filter for quasi-Gaussian pulse shaping[J]. Journal of Instrumentation, 18, P04002(2023).

    [14] Jordanov V T. Unfolding-synthesis technique for digital pulse processing. Part 1: unfolding[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 805, 63-71(2015).

    [15] Regadío A, Esteban L, Sánchez-Prieto S. Unfolding using deep learning and its application on pulse height analysis and pile-up management[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1005, 165403(2021).

    [16] Janjanam L, Saha S K, Kar R et al. Volterra filter modelling of non-linear system using Artificial Electric Field algorithm assisted Kalman filter and its experimental evaluation[J]. ISA Transactions, 125, 614-630(2022).

    [17] Stoller D, Ewert S, Dixon S. Wave-U-net: a multi-scale neural network for end-to-end audio source separation[EB/OL](2018). https://arxiv.org/abs/1806.03185

    [18] Ma X K, Huang H Q, Huang B R et al. X-ray spectra correction based on deep learning CNN-LSTM model[J]. Measurement, 199, 111510(2022).

    [19] Ma X K, Huang H Q, Wang Q C et al. Estimation of Gaussian overlapping nuclear pulse parameters based on a deep learning LSTM model[J]. Nuclear Science and Techniques, 30, 171(2019).

    [20] TANG Lin, LI Yong, TANG Yufeng et al. Application of an LSTM model based on deep learning through X-ray fluorescence spectroscopy[J]. Nuclear Techniques, 46, 070502(2023).

    [21] TANG Lin, ZHOU Shuang, LI Yong et al. Application of multi-head attention mechanism with embedded positional encoding in amplitude estimation of stacked pulses[J]. Nuclear Techniques, 46, 090505(2023).

    [22] Wang M, Zhou J B, Ouyang X P et al. Gaussian shaper for nuclear pulses based on multi-level Cascade Convolution[J]. Nuclear Science and Techniques, 33, 160(2022).

    [23] Zhang H Q, Shi H T, Li Z D et al. Digitalization of inverting filter shaping circuit for nuclear pulse signals[J]. Nuclear Science and Techniques, 31, 86(2020).

    [24] Wang X Y, Zhou J B, Wang M et al. Signal modeling and impulse response shaping for semiconductor detectors[J]. Nuclear Science and Techniques, 33, 46(2022).

    [25] Liu H R, Cheng Y X, Zuo Z et al. Discrimination of neutrons and gamma-rays in plastic scintillator based on pulse coupled neural network[J]. Nuclear Science and Techniques, 32, 82(2021).

    Lin TANG, Shuang ZHOU, Xianli LIAO, Ze LIU, Bo LI. Truncated pulse height estimator based on an improved UNet model[J]. NUCLEAR TECHNIQUES, 2023, 46(11): 110505
    Download Citation