• Semiconductor Optoelectronics
  • Vol. 43, Issue 6, 1029 (2022)
LU Jindong, KUANG Zuoxin, CHEN Wei, and YU Hua
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.16818/j.issn1001-5868.2022120802 Cite this Article
    LU Jindong, KUANG Zuoxin, CHEN Wei, YU Hua. Research Progress of High-speed Lithium Niobate Electro-optic Modulator[J]. Semiconductor Optoelectronics, 2022, 43(6): 1029 Copy Citation Text show less
    References

    [1] Deng H, Bogaerts W. Pure phase modulation based on a silicon plasma dispersion modulator[J]. Opt. Express, 2019, 27(19): 27191-27201.

    [2] Cheng Z, Zhu X, Galili M, et al. Double-layer graphene on photonic crystal waveguide electro-absorption modulator with 12GHz bandwidth[J]. Nanophotonics, 2019, 9(8): 2377-2385.

    [3] Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562(7725): 101-104.

    [4] Smith R W. High-speed lithium niobate modulators for WDM applications[J]. Proc. of SPIE, 2001, 4532: 1-3.

    [5] Wang C, Zhang M, Stern B, et al. Nanophotonic lithium niobate electro-optic modulators[J]. Opt. Express, 2018, 26(2): 1547-1555.

    [6] He M, Xu M, Ren Y, et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100Gbit·s-1 and beyond[J]. Nature Photonics, 2019, 13(5): 359-364.

    [7] Liu X, Xiong B, Sun C, et al. Wideband thin-film lithium niobate modulator with low half-wave-voltage length product[J]. Chinese Opt. Lett., 2021, 19(6): 85-90.

    [8] Zhang P, Huang H, Jiang Y, et al. High-speed electro-optic modulator based on silicon nitride loaded lithium niobate on an insulator platform[J]. Opt. Lett., 2021, 46(23): 5986-5989.

    [9] Huang X, Liu Y, Guan H, et al. High-efficiency, slow-light modulator on hybrid thin-film lithium niobate platform[J]. IEEE Photon. Technol. Lett., 2021, 33(19): 1093-1096.

    [10] Chen G, Lin H L, NG J D, et al. Integrated electro-optic modulator in Z-cut lithium niobate thin film with vertical structure[J]. IEEE Photon. Technol. Lett., 2021, 33(23): 1285-1288.

    [11] Li C, Chen B, Ruan Z, et al. High modulation efficiency and large bandwidth thin-film lithium niobate modulator for visible light[J]. Opt. Express, 2022, 30(20): 36394-36402.

    [12] Ali J, Eknoyan O, Soc I P. Electro-absorption plasmonic modulator in lithium niobate[C]// IEEE Photon. Conf., 2017: 89-90.

    [13] Lu H, Xiong H, Huang Z, et al. Electron-plasmon interaction on lithium niobate with gold nanolayer and its field distribution dependent modulation[J]. Opt. Express, 2019, 27(14): 19852-19863.

    [14] Enami Y, Nakamura H, Luo J, et al. Analysis of efficiently poled electro-optic polymer/TiO2 vertical slot waveguide modulators[J]. Opt. Communications, 2016, 362: 77-80.

    [15] Li J S. Novel optical modulator using silicon photonic crystals[J]. Opt. & Laser Technol., 2008, 40(6): 790-794.

    [16] Hinakura Y, Akiyama D, Ito H, et al. Silicon photonic crystal modulators for high-speed transmission and wavelength division multiplexing[J]. IEEE J. of Sel. Topics in Quantum Electron., 2021, 27(3): 1-8.

    [17] Hoghooghi N, Ozdur I, Akbulut M, et al. Resonant cavity linear interferometric intensity modulator[J]. Opt. Lett., 2010, 35(8): 1218-1220.

    [18] Witzigmann B, Arakawa Y, Osinski M, et al. Optical modulator based on silicon nanowires racetrack resonator[J]. Proc. of SPIE, 2018: 1052622.1-1052622.6.

    [19] Courjaal N, Bernal M P, Hauden J, et al. Some new trends on lithium niobate modulators[J]. Proc. of SPIE, 2006, 61230C.1-61230C.15.

    [20] Lu H, Sadani B, Ulliac G, et al. 6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity[J]. Opt. Express, 2012, 20(19): 20884-20893.

    [21] Li M, Ling J, He Y, et al. Lithium niobate photonic-crystal electro-optic modulator[J]. Nature Commun., 2020, 11(1): 4123.

    [22] Zhang J, Pan B, Liu W, et al. Ultra-compact electro-optic modulator based on etchless lithium niobate photonic crystal nanobeam cavity[J]. Opt. Express, 2022, 30(12): 20839-20846.

    [23] Zhang Y, Tian H, Yang D, et al. Ultra-compact low-voltage and slow-light MZI electro-optic modulator based on monolithically integrated photonic crystal[J]. Opt. Communications, 2014, 315: 138-146.

    [24] Liu X C, Xiong B, Sun C Z, et al. Ultra-compact thin film lithium niobate electro-optic modulator with metal-filled photonic crystal waveguide[C]// ACP/IPOC. NewYork: IEEE, 2020: 1-3.

    [25] Shi C, Yuan J, Luo X, et al. Transmission characteristics of multi-structure bandgap for lithium niobate integrated photonic crystal and waveguide[J]. Opt. Communications, 2020, 461.

    [26] Oikawa S, Yamamoto F, Ichikawa J, et al. Zero-chirp broadband Z-cut Ti∶LiNbO3 optical modulator using polarization reversal and branch electrode[J]. J. of Lightwave Technol., 2005, 23(9): 2756-2760.

    [27] Herbert V, Norbert G. Fibre Optic Communication[M]. 2ed. Switzerland: Springer Cham, 2017.

    [28] Weigel P O, Valdez F, Zhao J, et al. Design of high-bandwidth, low-voltage and low-loss hybrid lithium niobate electro-optic modulators[J]. J. of Phys.: Photonics, 2021, 012001.

    [29] Wang D, Liu Y, Xu B, et al. Traveling wave electrode simulation for integrated lithium niobite electro-optic modulators[J]. Proc. of SPIE, 2021: 11763.

    [30] Liu X, Xiong B, Sun C, et al. Capacitively-loaded thin-film lithium niobate modulator with ultra-flat frequency response[J]. IEEE Photon. Technol. Lett., 2022, 34(16): 854-857.

    [31] Sun S, He M, Xu M, et al. High-speed modulator with integrated termination resistor based on hybrid silicon and lithium niobate platform[J]. J. of Lightwave Technol., 2021, 39(4): 1108-1115.

    [32] Giovanni G. Semiconductor Devices for High-Speed Optoelectronics[M]. NewYork: Cambridge University, 2009.

    [33] Lee M. Dielectric constant and loss tangent in LiNbO3 crystals from 90 to 147GHz[J]. Appl. Phys. Lett., 2001, 79(9): 1342-1344.

    [34] Mercante A J, Shi S Y, Yao P, et al. Full spectrum millimeter-wave modulation in thin-film LiNbO3[C]// 2018 IEEE RAPID, 2018: 107-110.

    [35] Mercante A J, Shi S, Yao P, et al. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth[J]. Opt. Express, 2018, 26(11): 14810-14816.

    [36] Cai J, Guo C, Lu C, et al. Design optimization of silicon and lithium niobate hybrid integrated traveling-wave Mach-Zehnder modulator[J]. IEEE Photon. J., 2021, 13(4): 1-6.

    [37] Huang X, Liu Y, Li Z, et al. Advanced electrode design for low-voltage high-speed thin-film lithium niobate modulators[J]. IEEE Photonics J., 2021, 13(2): 1-9.

    [38] Kharel P, Reimer C, Luke K, et al. Breaking voltage-bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes[J]. Appl. Phys., 2021, 8(3): 1-7.

    [39] Wang Z, Chen G, Ruan Z, et al. Silicon-lithium niobate hybrid intensity and coherent modulators using a periodic capacitively loaded traveling-wave electrode[J]. ACS Photonics, 2022, 9(8): 2668-2675.

    [40] Frankel M Y, Gupta S, Valdmanis J A, et al. Terahertz attenuation and dispersion characteristics of coplanar transmission-lines[J]. IEEE Trans. Microw Theory Tech., 1991, 39(6): 910-916.

    [41] Weigel P O, Zhao J, Fang K, et al. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100GHz 3dB electrical modulation bandwidth[J]. Opt. Express, 2018, 26(18): 23728-23739.

    [42] Kim M H, Yu B M, Choi W Y. A Mach-Zehnder modulator bias controller based on OMA and average power monitoring[J]. IEEE Photon. Technol. Lett., 2017, 29(23): 2043-2046.

    [43] Yuan X, Zhang Y A, Zhang J, et al. Any point bias control technique for MZ modulator[J]. Optik, 2019, 178: 918-922.

    [44] Jin Y, Shi X, Zang C, et al. A novel design of Mach-Zehnder modulator bias controller based on pilot tone method[J]. Phys. Rev. C, 2020, 1486(7): 072070.

    [45] Ji Y, Wu B, Hou Y, et al. A MZ modulator bias control system based on variable step P&O algorithm[J]. IEEE Photon. Technol. Lett., 2020, 32(23): 1473-1476.

    [46] Pan Z, Liu S, Zhu N, et al. Arbitrary bias point control for Mach-Zehnder modulator using a linear-frequency modulated signal[J]. IEEE Photon. Technol. Lett., 2021, 33(11): 577-580.

    [47] Shi S, Yuan J, Huang Q, et al. Bias controller of Mach-Zehnder modulator for electro-optic analog-to-digital converter[J]. Micromachines (Basel), 2019, 10(12): 800.

    [48] Chen B, Ruan Z, Hu J, et al. Two-dimensional grating coupler on an X-cut lithium niobate thin-film[J]. Opt. Express, 2021, 29(2): 1289-1295.

    [49] Song J, Yuan S, Cui C, et al. High-efficiency and high-speed germanium photodetector enabled by multiresonant photonic crystal[J]. Nanophotonics, 2021, 10(3): 1081-1087.