[1] Deng H, Bogaerts W. Pure phase modulation based on a silicon plasma dispersion modulator[J]. Opt. Express, 2019, 27(19): 27191-27201.
[2] Cheng Z, Zhu X, Galili M, et al. Double-layer graphene on photonic crystal waveguide electro-absorption modulator with 12GHz bandwidth[J]. Nanophotonics, 2019, 9(8): 2377-2385.
[3] Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562(7725): 101-104.
[4] Smith R W. High-speed lithium niobate modulators for WDM applications[J]. Proc. of SPIE, 2001, 4532: 1-3.
[5] Wang C, Zhang M, Stern B, et al. Nanophotonic lithium niobate electro-optic modulators[J]. Opt. Express, 2018, 26(2): 1547-1555.
[6] He M, Xu M, Ren Y, et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100Gbit·s-1 and beyond[J]. Nature Photonics, 2019, 13(5): 359-364.
[7] Liu X, Xiong B, Sun C, et al. Wideband thin-film lithium niobate modulator with low half-wave-voltage length product[J]. Chinese Opt. Lett., 2021, 19(6): 85-90.
[8] Zhang P, Huang H, Jiang Y, et al. High-speed electro-optic modulator based on silicon nitride loaded lithium niobate on an insulator platform[J]. Opt. Lett., 2021, 46(23): 5986-5989.
[9] Huang X, Liu Y, Guan H, et al. High-efficiency, slow-light modulator on hybrid thin-film lithium niobate platform[J]. IEEE Photon. Technol. Lett., 2021, 33(19): 1093-1096.
[10] Chen G, Lin H L, NG J D, et al. Integrated electro-optic modulator in Z-cut lithium niobate thin film with vertical structure[J]. IEEE Photon. Technol. Lett., 2021, 33(23): 1285-1288.
[11] Li C, Chen B, Ruan Z, et al. High modulation efficiency and large bandwidth thin-film lithium niobate modulator for visible light[J]. Opt. Express, 2022, 30(20): 36394-36402.
[12] Ali J, Eknoyan O, Soc I P. Electro-absorption plasmonic modulator in lithium niobate[C]// IEEE Photon. Conf., 2017: 89-90.
[13] Lu H, Xiong H, Huang Z, et al. Electron-plasmon interaction on lithium niobate with gold nanolayer and its field distribution dependent modulation[J]. Opt. Express, 2019, 27(14): 19852-19863.
[14] Enami Y, Nakamura H, Luo J, et al. Analysis of efficiently poled electro-optic polymer/TiO2 vertical slot waveguide modulators[J]. Opt. Communications, 2016, 362: 77-80.
[15] Li J S. Novel optical modulator using silicon photonic crystals[J]. Opt. & Laser Technol., 2008, 40(6): 790-794.
[16] Hinakura Y, Akiyama D, Ito H, et al. Silicon photonic crystal modulators for high-speed transmission and wavelength division multiplexing[J]. IEEE J. of Sel. Topics in Quantum Electron., 2021, 27(3): 1-8.
[17] Hoghooghi N, Ozdur I, Akbulut M, et al. Resonant cavity linear interferometric intensity modulator[J]. Opt. Lett., 2010, 35(8): 1218-1220.
[18] Witzigmann B, Arakawa Y, Osinski M, et al. Optical modulator based on silicon nanowires racetrack resonator[J]. Proc. of SPIE, 2018: 1052622.1-1052622.6.
[19] Courjaal N, Bernal M P, Hauden J, et al. Some new trends on lithium niobate modulators[J]. Proc. of SPIE, 2006, 61230C.1-61230C.15.
[20] Lu H, Sadani B, Ulliac G, et al. 6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity[J]. Opt. Express, 2012, 20(19): 20884-20893.
[21] Li M, Ling J, He Y, et al. Lithium niobate photonic-crystal electro-optic modulator[J]. Nature Commun., 2020, 11(1): 4123.
[22] Zhang J, Pan B, Liu W, et al. Ultra-compact electro-optic modulator based on etchless lithium niobate photonic crystal nanobeam cavity[J]. Opt. Express, 2022, 30(12): 20839-20846.
[23] Zhang Y, Tian H, Yang D, et al. Ultra-compact low-voltage and slow-light MZI electro-optic modulator based on monolithically integrated photonic crystal[J]. Opt. Communications, 2014, 315: 138-146.
[24] Liu X C, Xiong B, Sun C Z, et al. Ultra-compact thin film lithium niobate electro-optic modulator with metal-filled photonic crystal waveguide[C]// ACP/IPOC. NewYork: IEEE, 2020: 1-3.
[25] Shi C, Yuan J, Luo X, et al. Transmission characteristics of multi-structure bandgap for lithium niobate integrated photonic crystal and waveguide[J]. Opt. Communications, 2020, 461.
[26] Oikawa S, Yamamoto F, Ichikawa J, et al. Zero-chirp broadband Z-cut Ti∶LiNbO3 optical modulator using polarization reversal and branch electrode[J]. J. of Lightwave Technol., 2005, 23(9): 2756-2760.
[27] Herbert V, Norbert G. Fibre Optic Communication[M]. 2ed. Switzerland: Springer Cham, 2017.
[28] Weigel P O, Valdez F, Zhao J, et al. Design of high-bandwidth, low-voltage and low-loss hybrid lithium niobate electro-optic modulators[J]. J. of Phys.: Photonics, 2021, 012001.
[29] Wang D, Liu Y, Xu B, et al. Traveling wave electrode simulation for integrated lithium niobite electro-optic modulators[J]. Proc. of SPIE, 2021: 11763.
[30] Liu X, Xiong B, Sun C, et al. Capacitively-loaded thin-film lithium niobate modulator with ultra-flat frequency response[J]. IEEE Photon. Technol. Lett., 2022, 34(16): 854-857.
[31] Sun S, He M, Xu M, et al. High-speed modulator with integrated termination resistor based on hybrid silicon and lithium niobate platform[J]. J. of Lightwave Technol., 2021, 39(4): 1108-1115.
[32] Giovanni G. Semiconductor Devices for High-Speed Optoelectronics[M]. NewYork: Cambridge University, 2009.
[33] Lee M. Dielectric constant and loss tangent in LiNbO3 crystals from 90 to 147GHz[J]. Appl. Phys. Lett., 2001, 79(9): 1342-1344.
[34] Mercante A J, Shi S Y, Yao P, et al. Full spectrum millimeter-wave modulation in thin-film LiNbO3[C]// 2018 IEEE RAPID, 2018: 107-110.
[35] Mercante A J, Shi S, Yao P, et al. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth[J]. Opt. Express, 2018, 26(11): 14810-14816.
[36] Cai J, Guo C, Lu C, et al. Design optimization of silicon and lithium niobate hybrid integrated traveling-wave Mach-Zehnder modulator[J]. IEEE Photon. J., 2021, 13(4): 1-6.
[37] Huang X, Liu Y, Li Z, et al. Advanced electrode design for low-voltage high-speed thin-film lithium niobate modulators[J]. IEEE Photonics J., 2021, 13(2): 1-9.
[38] Kharel P, Reimer C, Luke K, et al. Breaking voltage-bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes[J]. Appl. Phys., 2021, 8(3): 1-7.
[39] Wang Z, Chen G, Ruan Z, et al. Silicon-lithium niobate hybrid intensity and coherent modulators using a periodic capacitively loaded traveling-wave electrode[J]. ACS Photonics, 2022, 9(8): 2668-2675.
[40] Frankel M Y, Gupta S, Valdmanis J A, et al. Terahertz attenuation and dispersion characteristics of coplanar transmission-lines[J]. IEEE Trans. Microw Theory Tech., 1991, 39(6): 910-916.
[41] Weigel P O, Zhao J, Fang K, et al. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100GHz 3dB electrical modulation bandwidth[J]. Opt. Express, 2018, 26(18): 23728-23739.
[42] Kim M H, Yu B M, Choi W Y. A Mach-Zehnder modulator bias controller based on OMA and average power monitoring[J]. IEEE Photon. Technol. Lett., 2017, 29(23): 2043-2046.
[43] Yuan X, Zhang Y A, Zhang J, et al. Any point bias control technique for MZ modulator[J]. Optik, 2019, 178: 918-922.
[44] Jin Y, Shi X, Zang C, et al. A novel design of Mach-Zehnder modulator bias controller based on pilot tone method[J]. Phys. Rev. C, 2020, 1486(7): 072070.
[45] Ji Y, Wu B, Hou Y, et al. A MZ modulator bias control system based on variable step P&O algorithm[J]. IEEE Photon. Technol. Lett., 2020, 32(23): 1473-1476.
[46] Pan Z, Liu S, Zhu N, et al. Arbitrary bias point control for Mach-Zehnder modulator using a linear-frequency modulated signal[J]. IEEE Photon. Technol. Lett., 2021, 33(11): 577-580.
[47] Shi S, Yuan J, Huang Q, et al. Bias controller of Mach-Zehnder modulator for electro-optic analog-to-digital converter[J]. Micromachines (Basel), 2019, 10(12): 800.
[48] Chen B, Ruan Z, Hu J, et al. Two-dimensional grating coupler on an X-cut lithium niobate thin-film[J]. Opt. Express, 2021, 29(2): 1289-1295.
[49] Song J, Yuan S, Cui C, et al. High-efficiency and high-speed germanium photodetector enabled by multiresonant photonic crystal[J]. Nanophotonics, 2021, 10(3): 1081-1087.