• Optics and Precision Engineering
  • Vol. 31, Issue 2, 277 (2023)
Yanan GU, Ruyi CAO, Lishan ZHAO, Bibo LU, and Baishun SU*
Author Affiliations
  • College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo454003, China
  • show less
    DOI: 10.37188/OPE.20233102.0277 Cite this Article
    Yanan GU, Ruyi CAO, Lishan ZHAO, Bibo LU, Baishun SU. Real time semantic segmentation network of wire harness terminals based on multiple receptive field attention[J]. Optics and Precision Engineering, 2023, 31(2): 277 Copy Citation Text show less
    References

    [1] 1闫亮亮, 谷孝卫, 姬红亮, 等. 汽车线束保护介绍与分析[J]. 汽车电器, 2013(8): 19-22, 29. doi: 10.3969/j.issn.1003-8639.2013.08.007YANL L, GUX W, JIH L, et al. Introduction and analysis of wiring harness protection[J]. Auto Electric Parts, 2013(8): 19-22, 29.(in Chinese). doi: 10.3969/j.issn.1003-8639.2013.08.007

    [2] 2汤爱军. 汽车线束自动端子压接机的夹具和模具设计[J]. 安徽建筑工业学院学报(自然科学版), 2010, 18(3): 100-102, 107. doi: 10.3969/j.issn.1006-4540.2010.03.026TANGA J. The design of fixture and Die for the auto terminal crimping machine of the automotive wiring harness[J]. Journal of Anhui Institute of Architecture & Industry (Natural Science), 2010, 18(3): 100-102, 107.(in Chinese). doi: 10.3969/j.issn.1006-4540.2010.03.026

    [3] 3芦碧波, 刘利群, 郑艳梅, 等. 一种线束端子显微图像全自动分割方法[J]. 光电工程, 2016, 43(10): 49-55. doi: 10.3969/j.issn.1003-501X.2016.10.009LUB B, LIUL Q, ZHENGY M, et al. A method for segmenting the microscopic cable harness image automatically[J]. Opto-Electronic Engineering, 2016, 43(10): 49-55.(in Chinese). doi: 10.3969/j.issn.1003-501X.2016.10.009

    [4] 4侯守明, 王阳, 唐琪博, 等. 一种基于偏微分方程和Canny算子的图像分割方法[J]. 山西大学学报(自然科学版), 2017, 40(4): 676-682. doi: 10.13451/j.cnki.shanxi.univ(nat.sci.).2017.04.003HOUSH M, WANGY, TANGQ B, et al. Crimp terminals sectional contour extraction based on partial differential equation and canny operator[J]. Journal of Shanxi University (Natural Science Edition), 2017, 40(4): 676-682.(in Chinese). doi: 10.13451/j.cnki.shanxi.univ(nat.sci.).2017.04.003

    [5] T F CHAN, L A VESE. Active contours without edges. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 10, 266-277(2001).

    [6] 6李秀娟, 李贝贝, 于心俊. 线束端子在线检测系统[J]. 自动化仪表, 2015, 36(6): 65-68. doi: 10.16086/j.cnki.issn1000-0380.201506019LIX J, LIB B, YUX J. Online detection system of the wiring harness terminal[J]. Process Automation Instrumentation, 2015, 36(6): 65-68.(in Chinese). doi: 10.16086/j.cnki.issn1000-0380.201506019

    [7] 7胡建华, 王莹. 车用线束端子压接工艺研究[J]. 汽车零部件, 2010(10): 64-67. doi: 10.3969/j.issn.1674-1986.2010.10.023HUJ H, WANGY. The crimping technology for automotive electric wire terminals[J]. Automobile Parts, 2010(10): 64-67.(in Chinese). doi: 10.3969/j.issn.1674-1986.2010.10.023

    [8] 8田萱, 王亮, 丁琪. 基于深度学习的图像语义分割方法综述[J]. 软件学报, 2019, 30(2): 440-468. doi: 10.13328/j.cnki.jos.005659TIANX, WANGL, DINGQ. Review of image semantic segmentation based on deep learning[J]. Journal of Software, 2019, 30(2): 440-468.(in Chinese). doi: 10.13328/j.cnki.jos.005659

    [9] E SHELHAMER, J LONG, T DARRELL. Fully convolutional networks for semantic segmentation, 640-651(2016).

    [10] 10史健锋, 高治明, 王阿川. 结合ASPP与改进HRNet的多尺度图像语义分割方法研究[J]. 液晶与显示, 2021, 36(11): 1497-1505. doi: 10.37188/CJLCD.2021-0093SHIJ F, GAOZH M, WANGA CH. Multi-scale image semantic segmentation based on ASPP and improved HRNet[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(11): 1497-1505.(in Chinese). doi: 10.37188/CJLCD.2021-0093

    [11] 11李沛卓, 万雪, 李盛阳. 基于多模态学习的空间科学实验图像描述[J]. 光学 精密工程, 2021, 29(12): 2944-2955. doi: 10.37188/OPE.2021.0244LIP ZH, WANX, LISH Y. Image caption of space science experiment based on multi-modal learning[J]. Opt. Precision Eng., 2021, 29(12): 2944-2955.(in Chinese). doi: 10.37188/OPE.2021.0244

    [12] K M HE, G GKIOXARI, P DOLLÁR et al. Mask R-CNN, 2980-2988(2017).

    [13] S Q REN, K M HE, R GIRSHICK et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [14] 14刘媛媛, 张硕, 于海业, 等. 基于语义分割的复杂场景下的秸秆检测[J]. 光学 精密工程, 2020, 28(1): 200-211. doi: 10.3788/ope.20202801.0200LIUY Y, ZHANGSH, YUH Y, et al. Straw detection algorithm based on semantic segmentation in complex farm scenarios[J]. Opt. Precision Eng., 2020, 28(1): 200-211.(in Chinese). doi: 10.3788/ope.20202801.0200

    [15] M Y FAN, S Q LAI, J S HUANG et al. Rethinking BiSeNet for real-time semantic segmentation, 9711-9720(2021).

    [16] 16蔡体健, 彭潇雨, 石亚鹏, 等. 通道注意力与残差级联的图像超分辨率重建[J]. 光学 精密工程, 2021, 29(1): 142-151. doi: 10.37188/OPE.20212901.0142CAIT J, PENGX Y, SHIY P, et al. Channel attention and residual concatenation network for image super-resolution[J]. Opt. Precision Eng., 2021, 29(1): 142-151.(in Chinese). doi: 10.37188/OPE.20212901.0142

    [17] 17邓建国, 张素兰, 张继福, 等. 监督学习中的损失函数及应用研究[J]. 大数据, 2020, 6(1): 60-80. doi: 10.3969/j.issn.1673-2057.2020.06.003DENGJ G, ZHANGS L, ZHANGJ F, et al. Loss function and application research in supervised learning[J]. Big Data Research, 2020, 6(1): 60-80.(in Chinese). doi: 10.3969/j.issn.1673-2057.2020.06.003

    [18] 18谢娟英, 张凯云. XR-MSF-Unet:新冠肺炎肺部CT图像自动分割模型[J]. 计算机科学与探索, 2022: 1-18. doi: 10.3778/j.issn.1673-9418.2203023XIEJ Y, ZHANGK Y. XR-MSF-Unet: automatic segmentation model for COVID-19 lung CT images[J]. Journal of Frontiers of Computer Science and Technology, 2022: 1-18. (in Chinese). doi: 10.3778/j.issn.1673-9418.2203023

    [19] 19万黎明, 张小乾, 刘知贵, 等. 基于高效通道注意力的UNet肺结节CT图像分割[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 66-75.WANL M, ZHANGX Q, LIUZH G, et al. CT image segmentation of UNet pulmonary nodules based on efficient channel attention[J]. Journal of Guangxi Normal University (Natural Science Edition), 2022, 40(3): 66-75.(in Chinese)

    [20] 20周华平, 郑锐. 基于改进BiSeNet的煤矿井下轨道检测算法[J]. 湖北民族大学学报(自然科学版), 2021, 39(4): 398-403.ZHOUH P, ZHENGR. Underground rail detection algorithm based on improved BiSeNet[J]. Journal of Hubei Minzu University (Natural Science Edition), 2021, 39(4): 398-403.(in Chinese)

    [21] 21李紫薇, 英昌盛, 于晓鹏, 等. 基于改进SegNet模型的遥感图像建筑物分割[J]. 吉林大学学报(理学版), 2022, 60(2): 409-416.LIZ W, YINGCH SH, YUX P, et al. Building segmentation of remote sensing image based on improved SegNet model[J]. Journal of Jilin University (Science Edition), 2022, 60(2): 409-416.(in Chinese)

    Yanan GU, Ruyi CAO, Lishan ZHAO, Bibo LU, Baishun SU. Real time semantic segmentation network of wire harness terminals based on multiple receptive field attention[J]. Optics and Precision Engineering, 2023, 31(2): 277
    Download Citation