• Chinese Journal of Lasers
  • Vol. 48, Issue 4, 0401002 (2021)
Yihua Hu1、2、**, Xinyuan Zhang1、2, Shilong Xu1、2, Nanxiang Zhao1、2, and Liang Shi2、*
Author Affiliations
  • 1State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei, Anhui 230037, China
  • 2AnHui Province Key Laboratory of Electronic Restriction Technology, National University of Defense Technology, Hefei, Anhui 230037, China
  • show less
    DOI: 10.3788/CJL202148.0401002 Cite this Article Set citation alerts
    Yihua Hu, Xinyuan Zhang, Shilong Xu, Nanxiang Zhao, Liang Shi. Research Progress of Laser Reflective Tomography Techniques[J]. Chinese Journal of Lasers, 2021, 48(4): 0401002 Copy Citation Text show less
    References

    [1] Kalender W A, Kalender W A[M]. 计算机层析成像基本原理、系统技术、图像质量及应用, 298(2016).

         [M]. Computed tomography: fundamentals system technology image quality applications, 298(2016).

    [2] Parker J K, Craig E B, Klick D I et al. Reflective tomography: images from range-resolved laser radar measurements[J]. Applied Optics, 27, 2642-2643(1988).

    [3] Knight F K, Klick D. Ryan-Howard D P, et al. Laser radar reflective tomography utilizing a streak camera for precise range resolution[J]. Applied Optics, 28, 2196-2198(1989).

    [4] Knight F K, Klick D I. Ryan-Howard D P, et al. Two-dimensional tomographs using range measurements[J]. Proceedings of SPIE, 0999, 269-280(1989).

    [5] Marino R M, Capes R N, Keicher W E et al. Tomographic image reconstruction from laser radar reflective projections[J]. Proceedings of SPIE, 0999, 248-268(1989). http://spie.org/Publications/Proceedings/Paper/10.1117/12.960240

    [6] Knight F K, Klick D I. Ryan-Howard D P, et al. Visible laser radar: range tomography and angle-angle-range detection[J]. Optical Engineering, 30, 55-65(1991).

    [7] Knight F, Kulkarni S, Marino R et al. Tomographic techniques applied to laser radar reflective measurements[J]. The Lincoln Laboratory Journal, 2, 143-158(1989).

    [8] Hanes S A, Benham V N, Lasche J B et al. Field demonstration and characterization of a 10.6-μm reflection tomography imaging system[J]. Proceedings of SPIE, 4167, 230-241(2001). http://spie.org/x648.html?product_id=413831

    [9] Matson C L, Holland D E, Czyzak S R et al. Heterodyne laser radar for space-object imaging: results from recent field experiments[J]. Proceedings of SPIE, 2580, 288-295(1995). http://spie.org/Publications/Proceedings/Paper/10.1117/12.228490

    [10] Matson C L, Holland D E, Pierrottet D F et al. Satellite feature reconstruction using reflective tomography: field results[J]. Proceedings of SPIE, 3219, 65-72(1998). http://spie.org/Publications/Proceedings/Paper/10.1117/12.298050

    [11] Jin X F, Zhang P, Liu C H et al. Techniques on long-range and high-resolution imaging lidar[J]. Laser & Optoelectronics Progress, 50, 050002(2013).

    [12] Sun J F, Yan A M, Liu D A et al. Progress on long-range laser imaging ladar[J]. Laser & Optoelectronics Progress, 46, 49-54(2009).

    [13] Zhuang T G[M]. Principle and algorithm of CT, 77-97(1992).

    [14] Kak A C, Slaney M, Wang G. Principles of computerized tomographic imaging[J]. Medical Physics, 29, 106-108(2002).

    [15] Matson C L, Magee E P, Stone D. Reflective tomography for space object imaging using a short-pulselength laser[J]. Proceedings of SPIE, 2302, 73-82(1994). http://spie.org/Publications/Proceedings/Paper/10.1117/12.188058

    [16] Matson C L, Magee E P, Holland D E. Reflective tomography using a short-pulselength laser: system analysis for artificial satellite imaging[J]. Optical Engineering, 34, 2811-2820(1995). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=OPEGAR000034000009002811000001&idtype=cvips&gifs=Yes

    [17] Jin X F, Sun J F, Yan Y et al. Imaging resolution analysis in limited-view laser radar reflective tomography[J]. Optics Communications, 285, 2575-2579(2012). http://www.sciencedirect.com/science/article/pii/S0030401812001216

    [18] Yan Y, Jin X F, Zhou S P et al. Imaging resolution analysis using Fourier-slice theorem in reflective tomography laser radar[J]. Proceedings of SPIE, 8868, 88680V(2013).

    [19] Matson C L, Boger J K. Laboratory validation of heterodyne laser radar signal-to-noise expressions for intensity projection generation and image reconstruction[J]. Proceedings of SPIE, 2562, 195-202(1995). http://spie.org/Publications/Proceedings/Paper/10.1117/12.216954

    [20] Matson C L. Reconstructed image signal-to-noise issues in range-resolved reflective tomography[J]. Optics Communications, 137, 343-358(1997). http://www.sciencedirect.com/science/article/pii/S0030401896007729

    [21] Matson C L. Tomographic image quality from E-field and intensity projections[J]. Optics Communications, 186, 69-82(2000). http://www.sciencedirect.com/science/article/pii/S0030401800010671

    [22] Matson C L. Tomographic satellite image reconstruction using ladar E-field or intensity projections: computer simulation results[J]. Proceedings of SPIE, 2566, 166-176(1995). http://spie.org/Publications/Proceedings/Paper/10.1117/12.217371

    [23] Qu F Q, Hu Y H, Wang D. Lidar reflective tomography imaging for space object[J]. Proceedings of SPIE, 8200, 820015(2011). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1344044

    [24] Qu F Q, Hu Y H, Leng J F. Reflective tomography lidar imaging based on chirped pulse signal[J]. Opto-Electronic Engineering, 39, 55-59(2012).

    [25] Yan Y, Jin X F, Sun J F et al. Research of spotlight mode incoherently synthetic aperture imaging ladar[J]. Acta Optica Sinica, 32, 0211003(2012).

    [26] Qu F Q, Hu Y H, Jiao J J et al. Satellite-to-satellite lidar imaging using reflective tomography[J]. Acta Photonica Sinica, 42, 48-53(2013).

    [27] Jin X F. Research on key technologies of imaging ladar based on CT principles[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Science, 52-53(2012).

    [28] Gerchberg R W, Saxton W O. Practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik (Stuttgart), 35, 237-250(1972). http://ci.nii.ac.jp/naid/10025518647/#cit

    [29] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Optics Letters, 3, 27-29(1978). http://www.onacademic.com/detail/journal_1000035243727810_17d1.html

    [30] Fienup J R. Space object imaging through the turbulent atmosphere[J]. Proceedings of SPIE, 0149, 72-81(1978). http://spie.org/Publications/Proceedings/Paper/10.1117/12.956669

    [31] Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 21, 2758-2769(1982).

    [32] Fienup J R, Wackerman C C. Phase-retrival stagnation problems and solutions[J]. Journal of the Optical Society of America A, 3, 1897-1907(1986). http://www.opticsinfobase.org/oe/abstract.cfm?&id=2505

    [33] Yang G Z, Dong B Z, Gu B Y et al. Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a comparison[J]. Applied Optics, 33, 209-218(1994).

    [34] Ford S D, Matson C L. Projection registration in reflective tomography[J]. Proceedings of SPIE, 3815, 189-198(1999). http://spie.org/x648.html?product_id=364128

    [35] Jin X F, Sun J F, Yan Y et al. Application of phase retrieval algorithm in reflective tomography laser radar imaging[J]. Chinese Optics Letters, 9, 012801(2011). http://www.opticsjournal.net/Articles/Abstract?aid=OJ110106000072A7C0Fb

    [36] Zhao N X, Hu Y H. Research of phase retrieval algorithm in laser reflective tomography imaging[J]. Infrared and Laser Engineering, 48, 1005005(2019).

    [37] Chen J B, Sun H Y, Zhao Y Z et al. Misaligned reflective tomography image reconstruction algorithm based on phase retrieval[J]. Acta Optica Sinica, 38, 0411002(2018).

    [38] Jin X F, Sun J F, Yan Y et al. Feature tracking for projection registration in laboratory-scale reflective tomography laser radar imaging[J]. Optics Communications, 283, 3475-3480(2010). http://www.sciencedirect.com/science/article/pii/S0030401810004372

    [39] Sun J F, Jin X F, Zhou Y et al. Short pulselength direct-detect laser reflective tomography imaging ladar: field results[J]. Proceedings of SPIE, 7780, 778017(2010). http://spie.org/Publications/Proceedings/Paper/10.1117/12.860010

    [40] Zhou D L, Huang G H, Shi L et al. Laser reflective tomography projection registration method of non-cooperative target[J]. Science Technology and Engineering, 14, 104-107, 112(2014).

    [41] Gu Y, Hu Y H, Hao S Q et al. Study on influence of filter back-projection on laser reflective tomography[J]. Laser & Infrared, 45, 1500-1504(2015).

    [42] Chen J B, Sun H Y, Zhao Y Z et al. Typical influencing factors analysis of laser reflection tomography imaging[J]. Optik, 189, 1-8(2019). http://www.sciencedirect.com/science/article/pii/S0030402619306904

    [43] Shi L, Hu Y H, Zhao N X et al. Research on effect of reconstructed image quality in laser reflective tomography imaging[J]. Proceedings of SPIE, 1015, 101551P(2016). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2572048

    [44] Wang J C, Zhou S W, Shi L et al. Image quality analysis and improvement of ladar reflective tomography for space object recognition[J]. Optics Communications, 359, 177-183(2016).

    [45] Gu Y, Hu Y H, Hao S Q et al. Application of variational Bayesian deconvolution method in laser reflective tomography imaging[J]. Acta Optica Sinica, 36, 0611003(2016).

    [46] Lin F, Wang J C, Zhang H et al. Application of multi-frame iterative blind deconvolution method in laser reflective tomography imaging[J]. Acta Optica Sinica, 37, 0911001(2017).

    [47] Shi L, Wang L, Xu S L et al. Projections reconstruction in laser reflective tomography imaging through the use of basic wave pulse[J]. Proceedings of SPIE, 1142, 114270E(2020).

    [48] Jin X F, Sun J F, Yan Y et al. Modified radon-Fourier transform for reflective tomography laser radar imaging[J]. Proceedings of SPIE, 8192, 81921S(2011). http://proceedings.spiedigitallibrary.org/conference-proceedings-of-spie/8192/81921S/Modified-radon-Fourier-transform-for-reflective-tomography-laser-radar-imaging/10.1117/12.900227.full

    [49] Magee E P, Matson C L, Stone D. Comparison of techniques for image reconstruction using reflective tomography[J]. Proceedings of SPIE, 2302, 95-102(1994). http://spie.org/x648.html?product_id=188060

    [50] Pan X C, Sidky E Y, Vannier M. Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?[J]. Inverse Problems, 25, 1230009(2009). http://europepmc.org/abstract/MED/20376330

    [51] Jin X F, Sun J F, Yan Y et al. Small system imaging simulation for reflective tomography laser radar[J]. Acta Optica Sinica, 30, 747-752(2010).

    [52] Yang B, Hu Y H, Tang J Y. Full-waveform echo tomography radar target reconstruction modeling and simulation[J]. Proceedings of SPIE, 1084, 108460T(2018). http://www.researchgate.net/publication/329594500_Full-waveform_echo_tomography_radar_target_reconstruction_modeling_and_simulation

    [53] Yang B, Hu Y H, Li M L et al. Modeling and simulation of target reconstruction by laser reflection tomography[J]. Acta Optica Sinica, 38, 1128002(2018).

    [54] Yang B, Hu Y H. Laser reflection tomography target reconstruction algorithm based on algebraic iteration[J]. Infrared and Laser Engineering, 48, 0726002(2019).

    [55] Yang F Q, Zhang D H, Huang K D et al. Review of reconstruction algorithms with incomplete projection data of computed tomography[J]. Acta Physica Sinica, 63, 9-20(2014).

    [56] Gschwendtner A B, Keicher W E. Development of coherent laser radar at Lincoln laboratory[J]. Lincoln Laboratory Journal, 12, 383-396(2000). http://www.researchgate.net/publication/250282348_Development_of_Coherent_Laser_Radar_at_Lincoln_Laboratory

    [57] Jin X F, Yan Y, Sun J F et al. Angle-Doppler resolved reflective tomography laser imaging radar[J]. Acta Optica Sinica, 32, 0828001(2012).

    [58] Mosley D E, Matson C L, Czyzak S R. Active imaging of space objects using the HI-CLASS (high-performance CO2 ladar surveillance sensor) laser system[J]. Proceedings of SPIE, 3065, 52-60(1997). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=925622

    [59] Lasche J B, Matson C L, Ford S D et al. Reflective tomography for imaging satellites: experimental results[J]. Proceedings of SPIE, 3815, 178-188(1999). http://spie.org/Publications/Proceedings/Paper/10.1117/12.364127

    [60] Henriksson M, Olofsson T, Grönwall C et al. Optical reflectance tomography using TCSPC laser radar[J]. Proceedings of SPIE, 8542, 85420E(2012). http://spie.org/Publications/Proceedings/Paper/10.1117/12.974493

    [61] Zhou D L. Study on key technologies of spaceborne laser reflection tomography imaging[D]. Shanghai: University of Chinese Academy of Sciences, 60-82(2014).

    [62] Matson C L, Mosley D E. Reflective tomography reconstruction of satellite features: field results[J]. Applied Optics, 40, 2290-2296(2001).

    [63] Lasche J B, Hanes S A, Rowland K B et al. Imaging with heterodyne laser radar and reflection tomography[J]. Proceedings of SPIE, 4124, 275-285(2000). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=918317

    [64] Murray J, Triscari J, Fetzer G et al. Tomographic lidar. [C]∥Applications of Lasers for Sensing and Free Space Communications 2010, January 31-February 3, 2010,San Diego, California. Washington, D.C.: OSA, LSWA1(2010).

    [65] Sun J F, Jin X F, Liu L R. Study on the short pulselength direct-detect laser reflective tomography imaging ladar[J]. Proceedings of SPIE, 7419, 74190W(2009). http://www.zhangqiaokeyan.com/academic-conference-foreign_infrared-systems-photoelectronic-technology-iv_thesis/02051247060.html

    [66] Yan Y, Sun J F, Jin X F et al. Two-dimension image construction for range-resolved reflective tomography laser radar[J]. Proceedings of SPIE, 8162, 81620Y(2011). http://spie.org/x648.html?product_id=892649

    [67] Li Y Q, Zhang G S. A seismic blind deconvolution algorithm based on Bayesian compressive sensing[J]. Mathematical Problems in Engineering, 2015, 1-11(2015).

    [68] Valente D, Ilow J, Cada M. Blind deconvolution using compressed sensing in time dispersive MIMO OFDM systems[C]∥2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Oc, 296-301(2015).

    [69] Stoger D, Mathematik Z, Jung P et al. Blind deconvolution and compressed sensing[C]∥2016 4th International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa), September 19-22, 2016. Aach, 24-27(2016).

    [70] Candès E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 59, 1207-1223(2006). http://onlinelibrary.wiley.com/doi/10.1002/cpa.20124/abstract

    [71] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 52, 1289-1306(2006).

    [72] Romberg J. Imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 25, 14-20(2008).

    [73] Sidky E Y, Chartrand R, Pan X C. Image reconstruction from few views by non-convex optimization[C]∥2007 IEEE Nuclear Science Symposium Conference Record, October 26-November 3, 2007, Honolulu, HI, USA., 3526-3530(2007).

    [74] Liu X H. Research on sparse reconstruction algorithm for MR images based on compressed sensing[D]. Guangzhou: Southern Medical University, 31-81(2018).

    [75] Zhang H Y. Research on magnetic resonance image reconstruction algorithms using compressed sensing theory[D]. Tianjin: Tianjin University, 13-30(2017).

    [76] Zheng S Y. Research on computer tomography image reconstruction algorithm based on compressed sensing[D]. Shenyang: Northeastern University, 33-61(2017).

    [77] Chen H. MRI reconstruction algorithms based on compressed sensing[D]. Hefei: University of Science and Technology of China, 33-60(2016).

    [78] Chen Q G, Lu H Y, Yu G H et al. A CT local reconstruction algorithm based on prior image and compressed sensing[J]. Journal of Computer-Aided Design & Computer Graphics, 28, 632-636(2016).

    [79] Wu J R. Compressed sensing reconstruction of high spatio-temporal resolution abdominal dynamic magnetic resonance perfusion images with large respiratian motion[D]. Hangzhou: Zhejiang University, 19-56(2016).

    [80] Graff C G, Sidky E Y. Compressive sensing in medical imaging[J]. Applied Optics, 54, C23-C44(2015). http://www.opticsinfobase.org/ao/abstract.cfm?uri=ao-54-8-C23

    [81] Rose S D, Andersen M S, Sidky E Y et al. TV-constrained incremental algorithms for low-intensity CT image reconstruction[C]∥2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), October 31 - November 7, 2015, San Dieg, 1-3(2015).

    [82] Rose S D, Sidky E Y, Pan X C. TV constrained CT image reconstruction with discretized natural pixels[C]∥2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/, 1-3(2016).

    [83] Zhang Z, Ye J, Chen B et al. Investigation of optimization-based reconstruction with an image-total-variation constraint in PET[J]. Physics in Medicine and Biology, 61, 6055-6084(2016). http://pubmedcentralcanada.ca/pmcc/articles/PMC5062374/

    [84] Zhang Z, Ye J H, Rose S et al. Preliminary study of TV-constrained-likelihood-maximization image reconstruction from list-mode TOF-PET data[C]∥2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Sem, 1-3(2016).

    [85] Zhang Z, Rose S, Ye J H et al. Optimization-based image reconstruction from low-count, list-mode TOF-PET data[J]. IEEE Transactions on Biomedical Engineering, 65, 936-946(2018). http://ieeexplore.ieee.org/document/8283616

    [86] Chen Z Y, Basarab A, Kouamé D. Enhanced ultrasound image reconstruction using a compressive blind deconvolution approach[C]∥2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), March 5-9, 2017, Ne, 6245-6249(2017).

    [87] Kim K S, Kang S Y, Park C K et al. A compressed-sensing based blind deconvolution method for image deblurring in dental cone-beam computed tomography[J]. Journal of Digital Imaging, 32, 478-488(2019). http://link.springer.com/article/10.1007/s10278-018-0120-9

    [88] Wang L. CT reconstruction from incomplete projections based on deep generative networks[D]. Nanjing: Nanjing University of Posts and Telecommunications, 15-59(2019).

    [89] Bai J N. 2D/3D CT reconstruction from incomplete projections by using a contextual autoencoder network[D]. Nanjing: Nanjing University of Posts and Telecommunications, 18-52(2019).

    [90] Shin Y J, Chang W, Ye J C et al. Low-dose abdominal CT using a deep learning-based denoising algorithm: a comparison with CT reconstructed with filtered back projection or iterative reconstruction algorithm[J]. Korean Journal of Radiology, 21, 356-364(2020). http://www.researchgate.net/publication/339202750_Low-Dose_Abdominal_CT_Using_a_Deep_Learning-Based_Denoising_Algorithm_A_Comparison_with_CT_Reconstructed_with_Filtered_Back_Projection_or_Iterative_Reconstruction_Algorithm

    Yihua Hu, Xinyuan Zhang, Shilong Xu, Nanxiang Zhao, Liang Shi. Research Progress of Laser Reflective Tomography Techniques[J]. Chinese Journal of Lasers, 2021, 48(4): 0401002
    Download Citation