• Bulletin of the Chinese Ceramic Society
  • Vol. 43, Issue 2, 727 (2024)
CHEN Zhiqiang1, CUI Lei1,2,*, DONG Jing1,2, LI Haixia1, and XIA Weiwei2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    CHEN Zhiqiang, CUI Lei, DONG Jing, LI Haixia, XIA Weiwei. Preparation of CdS Nanospheres on Titanium Meshes with Photocatalytic H2 Evolution under Visible Light[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(2): 727 Copy Citation Text show less
    References

    [1] KOSCO J, BIDWELL M, CHA H, et al. Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles[J]. Nature Materials, 2020, 19: 559-565.

    [2] ZHU Q H, XU Z H, QIU B C, et al. Emerging cocatalysts on g-C3N4 for photocatalytic hydrogen evolution[J]. Small, 2021, 17(40): 2101070.

    [3] HERRON J A, KIM J, UPADHYE A A, et al. A general framework for the assessment of solar fuel technologies[J]. Energy & Environmental Science, 2015, 8(1): 126-157.

    [4] YU Y F, ZHANG J, WU X A, et al. Nanoporous single-crystal-like CdxZn1-xS nanosheets fabricated by the cation-exchange reaction of inorganic-organic hybrid ZnS-amine with cadmium ions[J]. Angewandte Chemie, 2012, 124(4): 921-924.

    [5] CHENG L, XIANG Q J, LIAO Y L, et al. CdS-based photocatalysts[J]. Energy & Environmental Science, 2018, 11(6): 1362-1391.

    [6] KUMAR D P, HONG S, REDDY D A, et al. Noble metal-free ultrathin MoS2 nanosheet-decorated CdS nanorods as an efficient photocatalyst for spectacular hydrogen evolution under solar light irradiation[J]. Journal of Materials Chemistry A, 2016, 4(47): 18551-18558.

    [7] TANG S P, XIA Y, FAN J J, et al. Carbon-platinum dual cocatalysts enhance the photocatalytic hydrogen production performance of CdS hollow spheres[J]. Chinese Journal of Catalysis, 2021, 42(5): 743-752.

    [8] YANG F, ZHANG Q, ZHANG J, et al. Embedding Pt nanoparticles at the interface of CdS/NaNbO3 nanorods heterojunction with bridge design for superior Z-scheme photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2020, 278: 119290.

    [9] HAO X Q, WANG Y C, ZHOU J, et al. Zinc vacancy-promoted photocatalytic activity and photostability of ZnS for efficient visible-light-driven hydrogen evolution[J]. Applied Catalysis B: Environmental, 2018, 221: 302-311.

    [10] ROSALES M, ZOLTAN T, YADAROLA C, et al. The influence of the morphology of 1D TiO2 nanostructures on photogeneration of reactive oxygen species and enhanced photocatalytic activity[J]. Journal of Molecular Liquids, 2019, 281: 59-69.

    [11] XU D, GAO A M, DENG W L. Self-assembly and photocatalytic properties of clustered and flowerlike CdS nanostructures[J]. Acta Physico-Chimica Sinica, 2008, 24(7): 1219-1224.

    [12] WANG L, WEI H W, FAN Y J, et al. Synthesis, optical properties, and photocatalytic activity of one-dimensional CdS@ZnS core-shell nanocomposites[J]. Nanoscale Research Letters, 2009, 4(6): 558-564.

    [13] ZHU B L, ZHAO W L, ZENG C J, et al. Preparation and photocatalytic performance of one-dimensional CdS/TiO2[J]. Chinese Journal of Catalysis, 2011, 32(10): 1651-1655 (in Chinese).

    [14] RUAN Q Q, MA X W, LI Y Y, et al. One-dimensional CdS@Cd0.5Zn0.5S@ZnS-Ni(OH)2 nano-hybrids with epitaxial heterointerfaces and spatially separated photo-redox sites enabling highly-efficient visible-light-driven H2 evolution[J]. Nanoscale, 2020, 12(39): 20522-20535.

    [15] MA H, SU D Y, XU W, et al. CdS microspheres: hydrothermal synthesis and UV-vis spectroscopy[J]. Chinese Journal of Inorganic Chemistry, 2006, 22(1): 83-86 (in Chinese).

    [16] VEAMATAHAU A, JIANG B, SEIFERT T, et al. Origin of surface trap states in CdS quantum dots: relationship between size dependent photoluminescence and sulfur vacancy trap states[J]. Physical Chemistry Chemical Physics, 2015, 17(4): 2850-2858.

    [17] GU W, YANG X, TENG F, et al. Enhanced photo activity by hole concentration on CdS surface[J]. Chemical Physics Letters, 2020, 759: 137945-137951.

    [18] ZHAO X, FENG J, CHEN S, et al. New insight into the roles of oxygen vacancies in hematite for solar water splitting[J]. Physical Chemistry Chemical Physics, 2017, 19: 1074-1082.

    [19] YI S, YAN J, WU B, et al. Noble-metal-free cobalt phosphide modified carbon nitride: an efficient photocatalyst for hydrogen generation[J]. Applied Catalysis B-Environmental, 2017, 200: 477-483.

    CHEN Zhiqiang, CUI Lei, DONG Jing, LI Haixia, XIA Weiwei. Preparation of CdS Nanospheres on Titanium Meshes with Photocatalytic H2 Evolution under Visible Light[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(2): 727
    Download Citation