• Infrared Technology
  • Vol. 46, Issue 2, 162 (2024)
Yanhua SHAO1,*, Qimeng HUANG1, Yanying MEI1, Xiaoqiang ZHANG1..., Hongyu CHU1 and Yadong WU2|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    SHAO Yanhua, HUANG Qimeng, MEI Yanying, ZHANG Xiaoqiang, CHU Hongyu, WU Yadong. Multi-scale Anchor Construction Method for Object Detection[J]. Infrared Technology, 2024, 46(2): 162 Copy Citation Text show less
    References

    [5] ZHANG S, CHI C, YAO Y, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 9759-9768.

    [6] LIN T Y, Maire M, Belongie S, et al. Microsoft coco: common objects in context[C]//European Conference on Computer Vision, 2014: 740-755.

    [7] LAW H, DENG J. Cornernet: detecting objects as paired key-points[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 765-781.

    [8] YUAN C, YANG H. Research on K-value selection method of K-means clustering algorithm[J]. Multidisciplinary Scientific Journal, 2019, 2(2):226-235.

    [9] LI M, ZHAO X, LI J, et al. ComNet: combinational neural network for object detection in UAV-Borne thermal images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(8): 6662-6673.

    [10] LUO Y, SHAO Y, CHU H, et al. CNN-based blade tip vortex region detection in flow field[C]//Eleventh International Conference on Graphics and Image Processing, 2020, 11373: 113730P .

    [11] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Association for the Advance of Artificial Intelligence(AAAI 2020), 2020: 12993-13000.

    [12] FU C Y, LIU W, Ranga A, et al. Dssd: Deconvolutional single shot detector[J/OL]. arXiv preprint arXiv:1701.06659, 2017.

    [13] LIN T, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 42(2): 318-327.

    [14] CAI Z, FAN Q, FE RIS R S, et al. A unified multi-scale deep convolutional neural network for fast object detection[C]//Proceedings of the 14th European Conference on Computer Vision, 2016: 354-370.

    [15] ZHU C, TAO R, LU K, et al. Seeing small faces from robust anchor's perspective[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 5127-5136.

    [16] KE W, ZHANG T, HUANG Z, et al. Multiple anchor learning for visual object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10206-10215.

    [17] Ramachandran P, Zoph B, Le Q V. Searching for activation functions[J/OL]. arXiv preprint arXiv:1710.05941, 2017.

    [18] KONG T, SUN F, LIU H, et al. Foveabox: beyond anchor-based object detection[J]. IEEE Transactions on Image Processing, 2020, 29: 7389-7398.

    [19] ZOU Zhengxia, SHI Zhenwei, GUO Yuhong, et al. Object detection in 20 years: a survey[J/OL]. arXiv preprint arXiv: 1905.05055, 2019.

    [20] Zoph B, Cubuk E D, Ghiasi G, et al. Learning data augmentation strategies for object detection[C]//European Conference on Computer Vision, 2020: 566-583.

    SHAO Yanhua, HUANG Qimeng, MEI Yanying, ZHANG Xiaoqiang, CHU Hongyu, WU Yadong. Multi-scale Anchor Construction Method for Object Detection[J]. Infrared Technology, 2024, 46(2): 162
    Download Citation