• Journal of Terahertz Science and Electronic Information Technology
  • Vol. 20, Issue 3, 241 (2022)
WANG Chang1、2、3、*, ZHENG Yonghui1、2、3, TAN Zhiyong1、2、3, HE Xiaoyong4, and CAO Juncheng1、2、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.11805/tkyda2021308 Cite this Article
    WANG Chang, ZHENG Yonghui, TAN Zhiyong, HE Xiaoyong, CAO Juncheng. Recent advances in terahertz waveguide[J]. Journal of Terahertz Science and Electronic Information Technology , 2022, 20(3): 241 Copy Citation Text show less
    References

    [1] FERGUSON B,ZHANG X C. Materials for terahertz science and technology[J]. Nature Materials, 2002,1(1):26-33.

    [2] LIU C,WANG C,CAO J C. Multipath propagation channel modeling and capacity analysis for terahertz indoor communications[J]. Journal of Optical Technology, 2017,84(1):53-61.

    [3] WANG C,WANG F,CAO J C. Terahertz radiation induced chaotic electron transport in semiconductor superlattices with a tilted magnetic field[J]. Chaos:An Interdisciplinary Journal of Nonlinear Science, 2014,24(3):033109.

    [4] CAO J C. Semiconductor terahertz sources,detectors and applications[M]. Beijing:Science Press, 2012.

    [5] FEDERICI J F,SCHULKIN B,Huang F,et al. THz imaging and sensing for security applications-explosives,weapons and drugs[J]. Semiconductor Science and Technology, 2005,20(7):S266-S280.

    [7] ZIMDARS D,VALDMANIS J A,WHITE J S,et al. Technology and applications of terahertz imaging nondestructive examination: inspection of space shuttle sprayed on foam insulation[J]. AIP Conference Proceedings, 2005,760(1):570-577.

    [8] HU B B,NUSS M C. Imaging with terahertz waves[J]. Optics Letters, 1995,20(16):1716-1718.

    [9] FITCH M J,OSIANDER R. Terahertz waves for communications and sensing[J]. Johns Hopkins APL Technical Digest, 2004,25 (4):348-355.

    [10] KLEINE-OSTMANN T,NAGATSUMA T. A review on terahertz communications research[J]. Journal of Infrared Millimeter & Terahertz Waves, 2011,32(2):143-171.

    [12] ORDAL M A,LONG L L,BELL R J,et al. Optical properties of the metals Al,Co,Cu,Au,Fe,Pb,Ni,Pd,Pt,Ag,Ti, and W in the infrared and far infrared[J]. Applied Optics, 1983,22(7):1099-1119.

    [13] MARK A O,BELL R J,ALEXANDER R W,et al. Optical properties of fourteen metals in the infrared and far infrared:Al,Co,Cu, Au,Fe,Pb,Mo,Ni,Pd,Pt,Ag,Ti,V, and W[J]. Applied Optics, 1985,24(24):4493-4499.

    [14] MCGOWAN R W,GALLOT G,GRISCHKOWSKY D. Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides[J]. Optics Letters, 1999,24(20):1431-1433.

    [15] GALLOT G,JAMISON S P,MCGOWAN R W,et al. Terahertz waveguides[J]. OSA publishing JOSA B, 2000,17(5):851-863.

    [16] LU D M, YAO J Q, ZHENG Y, et al. Transmission characteristics of hollow metallic film-coated circular waveguide for THz radiation[J]. Laser & Infrared, 2007,37(12):1287-1289.

    [17] HARRINGTON J A,PEDERSEN P,BOWDEN B F,et al. Hollow cucoated plastic waveguides for the delivery of THz radiation[C]// Terahertz and Gigahertz Electronics and Photonics IV. [S.l.]:SPIE 2005,5727:143-150.

    [19] MENDIS R, GRISCHKOWSKY D. Undistorted guided-wave propagation of subpicosecond terahertz pulses[J]. Optics Letters, 2001,26(11):846-848.

    [20] MENDIS R,GRISCHKOWSKY D. THz interconnect with low-loss and low-group velocity dispersion[J]. IEEE Microwave and Wireless Components Letters, 2001,11(11):444-446.

    [21] MENDIS R. THz transmission characteristics of dielectric-filled parallel-plate waveguides[J]. Journal of Applied Physics, 2007,101(8):083115.

    [22] COOKE D G,JEPSEN P U. Optical modulation of terahertz pulses in a parallel plate waveguide[J]. Optics Express, 2008,16(19): 15123-15129.

    [23] WANG K L,MITTLEMAN D M. Metal wires for terahertz wave guiding[J]. Nature, 2004,432(7015):376-379.

    [24] WANG K L,MITTLEMAN D M. Guided propagation of terahertz pulses on metal wires[J]. JOSA B, 2005,22(9):2001-2008.

    [25] JEON T, ZHANG J Q, GRISCHKOWSKY D. THz sommerfeld wave propagation on a single metal wire[J]. Applied Physics Letters, 2005,86(16):161904.

    [26] HE X Y,CAO J C,FENG S L. Simulation of the propagation property of metal wires terahertz waveguides[J]. Chinese Physics Letters, 2006,23(8):2066-2069.

    [27] JAMISON S P, MCGOWAN W, GRISCHKOWSKY D. Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers[J]. Applied Physics Letters, 2000,76(15):1987-1989.

    [28] CHEN L J,CHEN H W,KAO T F,et al. Low-loss subwavelength plastic fiber for terahertz waveguiding[J]. Optics Letters, 2006, 31(3):308-310.

    [29] LAI C H,HSUEH Y C,CHEN H W,et al. Low-index terahertz pipe waveguides[J]. Optics Letters, 2009,34(21):3457-3459.

    [30] LU J T, HSUEH Y C, HUANG Y R, et al. Bending loss of terahertz pipe waveguides[J]. Optics Express, 2010, 18(25): 26332-26338.

    [31] BAO H L,NIELSEN K,BANG O,et al. Dielectric tube waveguides with absorptive cladding for broadband,low-dispersion and low loss THz guiding[J]. Scientific Reports, 2015,5(1):1-9.

    [32] YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20):2059-2062.

    [33] SAJEEV J. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987,58(23): 2486-2489.

    [34] YARIV A,XU Y,LEE R K,et al. Coupled-resonator optical waveguide:a proposal and analysis[J]. Optics Letters, 1999,24(11): 711-713.

    [36] ZHANG Y,LI Z J,LI B J. Multimode interference effect and self-imaging principle in two-dimensional silicon photonic crystal waveguides for terahertz waves[J]. Optics Express, 2006,14(7):2679-2689.

    [37] PONSECA Carlito S, ESTACIO Elmer, POBRE Romeric, et al. Transmission characteristics of lens-duct and photonic crystal waveguides in the terahertz region[J]. JOSA B, 2009,26(9):A95-A100.

    [38] KITAGAWA J, KODAMA M, KADOYA Y. Design of two-dimensional low-dielectric photonic crystal and its terahertz waveguide application[J]. Japanese Journal of Applied Physics, 2012,51(6R):062201.

    [39] TSURUDA K,FUJITA M,NAGATSUMA T. Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab[J]. Optics Express, 2015,23(25):31977-31990.

    [41] CHEN T, SUN J Q, LI L, et al. Design of a photonic crystal waveguide for terahertz-wave difference-frequency generation[J]. IEEE Photonics Technology Letters, 2012,24(11):921-923.

    [42] KNIGHT J C,BIRKS T A,ATKIN D M,et al. Pure silica single-mode fibre with hexagonal photonic crystal cladding[C]// Optical Fiber Communication Conference. San Jose,USA:[s.n.], 1996:339.

    [43] CREGAN R F,MANGAN B J,KNIGHT J C,et al. Single-mode photonic band gap guidance of light in air[J]. Science, 1999,285 (5433):1537-1539.

    [44] GOTO M,QUEMA A,TAKAHASHI H,et al. Teflon photonic crystal fiber as terahertz waveguide[J]. Japanese Journal of Applied Physics, 2004,43(2B):L317-L319.

    [45] GOTO M,QUEMA A,TAKAHASHI H,et al. Teflon photonic crystal fiber as polarization-preserving waveguide in THz region[C]// International Conference on Ultra-fast Phenomena. Berlin:Springer, 2005:702-704.

    [46] LI S P,LIU H J,HUANG N,et al. Broadband high birefringence and low dispersion terahertz photonic crystal fiber[J]. Journal of Optics, 2014,16(10):105102.

    [47] MEDJOURI A,SIMOHAMED L M,ZIANE O,et al. Investigation of high birefringence and chromatic dispersion management in photonic crystal fibre with square air holes[J]. Optik, 2015,126(20):2269-2274.

    [48] BHATTACHARYA R,KONAR S. Extremely large birefringence and shifting of zero dispersion wavelength of photonic crystal fibers[J]. Optics & Laser Technology, 2012,44(7):2210-2216.

    [49] AGRAWAL A,KEJALAKSHMY N,UTHMAN M,et al. Ultra low bending loss equiangular spiral photonic crystal fibers in the terahertz regime[J]. AIP Advances, 2012,2(2):022140.

    [50] CHEN H B, WANG H, HOU H L, et al. A terahertz single-polarization single-mode photonic crystal fiber with a rectangular array of micro-holes in the core region[J]. Optics Communications, 2012,285(18):3726-3729.

    [51] HAN J W,ZHANG J,ZHAO Y L,et al. Numerical demonstration of mode-division multiplexing transmission over dual-mode photonic crystal fiber enabled by fiber couplers[J]. Optik, 2013,124(12):1287-1289.

    [52] ZHANG Z G, TANG J, LUO D, et al. Research on terahertz photonic crystal fiber characteristics with high birefringence[J]. Optik, 2014,125(1):154-158.

    [53] YANG J, YANG B, WANG Z, et al. Design of the low-loss wide bandwidth hollow-core terahertz inhibited coupling fibers[J]. Optics Communications, 2015,343:150-156.

    [54] MISRA M,PAN Y,WILLIAMS C R,et al. Characterization of a hollow core fibre-coupled near field terahertz probe[J]. Journal of Applied Physics, 2013,113(19):193104.

    [55] ISLAM S,ISLAM M R,FAISAL M,et al.Extremely low-loss,dispersion flattened porouscore photonic crystal fiber for terahertz regime[J]. Optical Engineering, 2016,55(7):076117.

    [56] WU Z Q,ZHOU X Y,SHI Z H,et al. Proposal for high-birefringent terahertz photonic crystal fiber with all circle air holes[J]. Optical Engineering, 2016,55(3):037105.

    [57] WOOD R W. Xlii on a remarkable case of uneven distribution of light in a diffraction grating spectrum[J]. The London, Edinburgh,and Dublin Philosophical Magazine and Journal of Science, 1902,4(21):396-402.

    [58] FANO U. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces(sommerfeld's waves)[J]. JOSA, 1941,31(3):213-222.

    [59] PINES D. Collective energy losses in solids[J]. Reviews of Modern Physics, 1956,28(3):184.

    [60] STERN E A,FERRELL R A. Surface plasma oscillations of a degenerate electron gas[J]. Physical Review, 1960,120(1):130.

    [61] KRETSCHMANN E, RAETHER H. Radiative decay of non-radiative surface plasmons excited by light[J]. Zeitschrift Für Naturforschung, 1968,23A(12):2135-2136.

    [62] OTTO A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection[J]. Zeitschrift Für Physik A Hadrons and Nuclei, 1968,216(4):398-410.

    [63] BARNES W L,DEREUX A,EBBESEN T W. Surface plasmon subwavelength optics[J]. Nature, 2003,424(6950):824-830.

    [64] LIU Y M,ZENTGRAF T,BARTAL G,et al. Transformational plasmonoptics[J]. Nano Letters, 2010,10(6):1991-1997.

    [65] PITARKE J M,SILKIN V M,CHULKOV E V,et al. Theory of surface plasmons and surface-plasmon polaritons[J]. Reports on Progress in Physics, 2006,70(1):1-87.

    [66] SHCHEGROV A V, NOVIKOV I V, MARADUDIN A A. Scattering of surface plasmon polaritons by a circularly symmetric surface defect[J]. Physical Review Letters, 1997,78(22):4269-4272.

    [67] JEON T, ZHANG J Q, GRISCHKOWSKY D. THz sommerfeld wave propagation on a single metal wire[J]. Applied Physics Letters, 2005,86(16):161904.

    [68] JEON T, GRISCHKOWSKY D. THz zenneck surface wave(THz surface plasmon) propagation on a metal sheet[J]. Applied Physics Letters, 2006,88(6):061113.

    [69] PENDRY J B,MARTIN-MORENO L,GARCIA-VIDAL F J. Mimicking surface plasmons with structured surfaces[J]. Science, 2004,305(5685):847-848.

    [70] WILLIAMS C R, ANDREWS S R, MAIER S A, et al. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces[J]. Nature Photonics, 2008,2(3):175-179.

    [71] FERNANDEZ-DOMINGUEZ A I,MARTIN-MOREN L O,GARCIA-VIDAL F J,et al. Spoof surface plasmon polariton modes propagating along periodically corrugated wires[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008,14(6):1515-1521.

    [72] FERNáNDEZ-DOMíNGUEZ A I,WILLIAMS C R,GARCíA-VIDAL J,et al. Terahertz surface plasmon polaritons on a helically grooved wire[J]. Applied Physics Letters, 2008,93(14):141109.

    [73] ZHANG J,CAI L K,BAI W L,et al. Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide[J]. Journal of Applied Physics, 2009,106(10):103715.

    [74] GAO Z,ZHANG X F,SHEN L F. Wedge mode of spoof surface plasmon polaritons at terahertz frequencies[J]. Journal of Applied Physics, 2010,108(11):113104.

    [75] SHEN X P, CUI T J, MARTIN-CANO D, et al. Conformal surface plasmons propagating on ultrathin and flexible films[J]. Proceedings of the National Academy of Sciences, 2013,110(1):40-45.

    [76] XU J J,ZHANG H C,ZHANG Q,et al. Efficient conversion of surface-plasmon-like modes to spatial radiated modes[J]. Applied Physics Letters, 2015,106(2):021102.

    [77] GAO X,ZHOU L,LIAO Z,et al. An ultrawideband surface plasmonic filter in microwave frequency[J]. Applied Physics Letters, 2014,104(19):191603.

    [78] ZHANG H C,FAN Y F,GUO J,et al. Second-harmonic generation of spoof surface plasmon polaritons using nonlinear plasmonic metamaterials[J]. ACS Photonics, 2016,3(1):139-146.

    [79] LIU Y, YAN J, SHAO Y, et al. Spoof surface plasmon polaritons based on ultrathin corrugated metallic grooves at terahertz frequency[J]. Applied Optics, 2016,55(7):1720-1724.

    [80] LIU Y Q, DU C H, LIU P K. Terahertz electronic source based on spoof surface plasmons on the doubly corrugated metallic waveguide[J]. IEEE Transactions on Plasma Science, 2016,44(12):3288-3294.

    [81] ISLAM M,CHOWDHURY D R,AHMAD A,et al. Terahertz plasmonic waveguide based thin film sensor[J]. Journal of Lightwave Technology, 2017,35(23):5215-5221.

    [82] ZHANG Y, XU Y H, TIAN C X, et al. Terahertz spoof surface-plasmonpolariton subwavelength waveguide[J]. Photonics Research, 2018,6(1):18-23.

    [83] GUO Y J, KAI D X, TANG X H. Spoof plasmonic waveguide developed from coplanar stripline for strongly confined terahertz propagation and its application in microwave filters[J]. Optics Express, 2018,26(8):10589-10598.

    [84] JAISWAL R K, PANDIT N, PATHAK N P. Spoof surface plasmon polaritons based reconfigurable band-pass filter[J]. IEEE Photonics Technology Letters, 2018,31(3):218-221.

    [85] XU K D, ZHANG F Y, GUO Y J, et al. Spoof surface plasmon polaritons based on balanced coplanar stripline waveguides[J]. IEEE Photonics Technology Letters, 2019,32(1):55-58.

    [86] NAIR R R,BLAKE P,GRIGORENKO A N,et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008,320(5881):1308.

    [87] MAK K F,SFEIR M Y,WU Y,et al. Measurement of the optical conductivity of graphene[J]. Physical Review Letters, 2008,101 (19):196405.

    [88] NETO A H C,GUINEA F,PERES N M R,et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009,81:

    [89] BALANDIN A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials, 2011, 10(8): 569-581.

    [90] BALANDIN A A,GHOSH S,BAO W Z,et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008,8(3): 902-907.

    [91] BOLOTIN K I,SIKES K J,JIANG Z F,et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008,146(9-10):351-355.

    [92] KOESTER S J, LI M. Waveguide-coupled graphene optoelectronics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013,20(1):84-94.

    [93] HANSON G W. Quasi-transverse electromagnetic modes supported by a graphene parallelplate waveguide[J]. Journal of Applied Physics, 2008,104(8):084314.

    [94] VAKIL A,ENGHETA N. Transformation optics using graphene[J]. Science, 2011,332(6035):1291-1294.

    [95] YUAN Y Z,YAO J Q,XU W. Terahertz photonic states in semiconductor-graphene cylinder structures[J]. Optics Letters, 2012, 37(5):960-962.

    [96] WANG J,LU W B,LI X B,et al. Graphene plasmon guided along a nanoribbon coupled with a nanoring[J]. Journal of Physics D: Applied Physics, 2014,47(13):135106.

    [97] CHEN T, WANG L L, CHEN L Q, et al. Tunable terahertz wave difference frequency generation in a graphene/algaas surface plasmon waveguide[J]. Photonics Research, 2018,6(3):186-192.

    [98] HE X Q, NING T G, PEI L, et al. Tunable hybridization of graphene plasmons and dielectric modes for highly confined light transmit at terahertz wavelength[J]. Optics Express, 2019,27(5):5961-5972.

    [99] ZHENG K,YUAN Y F,ZHAO L T,et al. Ultracompact, low-loss terahertz waveguide based on graphene plasmonic technology[J]. 2D Materials, 2019,7(1):015016.

    [100] SI K Y, HUANG Y Y, ZHAO Q Y, et al. Terahertz surface emission from layered semiconductor wse2[J]. Applied Surface Science, 2018,448(1):416-423.

    [101] XU S J,YANG J,JIANG H C,et al. Transient photoconductivity and free carrier dynamics in a monolayer ws2 probed by time resolved terahertz spectroscopy[J]. Nanotechnology, 2019,30(26):265706.

    [103] ZHONG Y J,HUANG Y,ZHONG S C,et al. Tunable terahertz broadband absorber based on mos2 ring-cross array structure[J]. Optical Materials, 2021,114:110996.

    [104] LU D Y,LI W,ZHOU H,et al. Black phosphorus/waveguide terahertz plasmonic structure for ultrasensitive tunable gas sensing[J]. Photonics and Nanostructures-Fundamentals and Applications, 2021,46(1):100946.

    WANG Chang, ZHENG Yonghui, TAN Zhiyong, HE Xiaoyong, CAO Juncheng. Recent advances in terahertz waveguide[J]. Journal of Terahertz Science and Electronic Information Technology , 2022, 20(3): 241
    Download Citation