• NUCLEAR TECHNIQUES
  • Vol. 46, Issue 2, 020606 (2023)
Yongping WANG1, Yushan TAO2, Yunqin WU1, Youqi ZHENG1、*, and Xianan DU1
Author Affiliations
  • 1Xi'an Jiaotong University, Xi'an 710049, China
  • 2Nuclear Power Institute of China, Chengdu 610213, China
  • show less
    DOI: 10.11889/j.0253-3219.2023.hjs.46.020606 Cite this Article
    Yongping WANG, Yushan TAO, Yunqin WU, Youqi ZHENG, Xianan DU. Shielding design of a megawatt-scale heat pipe reactor core[J]. NUCLEAR TECHNIQUES, 2023, 46(2): 020606 Copy Citation Text show less
    Radial layout of UPR-s (color online)
    Fig. 1. Radial layout of UPR-s (color online)
    Layout of the UUV system and pressure tank (color online)
    Fig. 2. Layout of the UUV system and pressure tank (color online)
    Diagram of shielding region of the UUV
    Fig. 3. Diagram of shielding region of the UUV
    Neutron energy spectrum of UPR-s under full-power operating conditions
    Fig. 4. Neutron energy spectrum of UPR-s under full-power operating conditions
    Calculation results of source intensity after shutdown (a) Neutron source intensity versus time, (b) Photon source intensity versus time
    Fig. 5. Calculation results of source intensity after shutdown (a) Neutron source intensity versus time, (b) Photon source intensity versus time
    The spectrum of UPR-s after shutdown (a) Neutron spectrum, (b) Photon spectrum
    Fig. 6. The spectrum of UPR-s after shutdown (a) Neutron spectrum, (b) Photon spectrum
    Diagram of initial shielding model (color online)
    Fig. 7. Diagram of initial shielding model (color online)
    Two composite shielding models (a) Poly-LiH-W layout scheme, (b) LiH-Poly-W layout scheme
    Fig. 8. Two composite shielding models (a) Poly-LiH-W layout scheme, (b) LiH-Poly-W layout scheme
    Calculation results for Poly-LiH-W shielding models (a) Neutron fluence in the safety plane, (b) Photon dose in the safety plane
    Fig. 9. Calculation results for Poly-LiH-W shielding models (a) Neutron fluence in the safety plane, (b) Photon dose in the safety plane
    Shadow shielding model (color online)
    Fig. 10. Shadow shielding model (color online)
    Calculation results for the shadow shielding model (a) Neutron fluence in the safety plane, (b) Photon dose in the safety plane, (c) Neutron fluence changes with axial coordinates, (d) Photon dose changes with axial coordinates
    Fig. 11. Calculation results for the shadow shielding model (a) Neutron fluence in the safety plane, (b) Photon dose in the safety plane, (c) Neutron fluence changes with axial coordinates, (d) Photon dose changes with axial coordinates
    Structure of optimized shielding design
    Fig. 12. Structure of optimized shielding design
    Calculation results for the shielding model under full-power operating conditions (a) Neutron fluence in the safety plane, (b) Photon dose in the safety plane, (c) Neutron fluence changes with axial coordinates, (d) Photon dose changes with axial coordinates
    Fig. 13. Calculation results for the shielding model under full-power operating conditions (a) Neutron fluence in the safety plane, (b) Photon dose in the safety plane, (c) Neutron fluence changes with axial coordinates, (d) Photon dose changes with axial coordinates
    Calculation results for the shielding model after shutdown (a) Change in maximum dose rate in the safety plane with time, (b) Dose rate in the safety plane after 15 d of shutdown, (c) Dose rate in the safety plane after 15 d of shutdown, (d) Change in dose rate with axial coordinates after 15 d of shutdown
    Fig. 14. Calculation results for the shielding model after shutdown (a) Change in maximum dose rate in the safety plane with time, (b) Dose rate in the safety plane after 15 d of shutdown, (c) Dose rate in the safety plane after 15 d of shutdown, (d) Change in dose rate with axial coordinates after 15 d of shutdown
    参数Parameter数值Value
    热功率Thermal Power / MWth1
    寿期Life / a5
    热管数目Number of heat pipe109
    燃料棒数目Number of fuel rod480
    富集度Enrichment / %73/55/19.75
    三种UO2燃料棒数目Number of three UO2 fuel rod332/108/40
    活性区基体材料Active zone matrix materialMo-0.59W-0.31Ti-0.11Zr-0.01C
    上下反射层材料Upper and bottom reflector materialBeO
    保温层厚度Thickness of insulation layer / mm3.3
    滑动反射层/控制棒数目Number of sliding reflector/ Control rod4/4
    滑动反射层反射体(跟随体)材料Sliding reflector (follower) materialBeO (Stainless steel)
    安全棒反射体(跟随体)材料Safety rod reflector (follower) materialBeO (B4C)
    燃料区外围区域反射层材料Fuel region reflector materialBe
    反射层外部材料Material outside reflectorB4C
    活性区体积Volume of active region / L93.61
    活性区高度Height of active region / mm450
    反应堆高度Height of reactor / mm900
    反射层外径Outer radius of reflector / mm960
    反应堆外径Outer radius of reactor / mm1 000
    Table 1. Overall design parameters of UPR-s

    区域

    Regions

    尺寸

    Sizes / cm

    材料

    Materials

    体积占比

    Volume ratio / %

    活性区(含热管)

    Active zone (including heat pipe)

    Φ25.73×H4573 wt% UO217.45
    55 wt% UO25.68
    19.75 wt% UO22.10
    氦气Helium0.86
    钼合金Molybdenum alloy36.87
    Na10.36
    Haynes23313.34
    真空Vacuum13.33

    上(下)轴向反射层

    Upper (lower) axial reflector

    Φ25.73×H22.5

    -热管Heat pipe

    BeO92.80
    钼合金Molybdenum alloy7.20

    径向反射层

    Radial reflector

    Φ48×H90

    -Φ25.73×H90

    钼合金Molybdenum alloy0.11
    BeO23.06
    不锈钢Stainless steel2.02
    Be68.75
    真空Vacuum6.06

    径向屏蔽层

    Radial shielding

    Φ50×H90

    -Φ48×H90

    B4C100.00

    热管(从活性区外部伸出建模)

    Heat pipes (outside the active zone)

    Φ1.5×H151.5Na27.98
    Haynes23336.02
    真空Vacuum36.00

    温差发电(区域中心与活性区中心距离为139.5 cm)

    Thermoelectric power generation (the distance

    between the center of the area and the center

    of the active zone is 139.5 cm)

    X45×Y49.5×Z114

    -热管Heat pipe

    Al74.16
    H2O6.02
    真空Vacuum19.82

    仪器打混

    Instrument mix

    不锈钢Stainless steel10.00
    真空Vacuum90.00
    Table 2. Sizes and materials of different regions
    材料Material作用Function密度Density / g·cm-3
    碳化硼B4C中子屏蔽Neutron shielding2.22
    水Water中子屏蔽Neutron shielding1.00
    铍Be中子屏蔽Neutron shielding1.85
    聚乙烯Polyethylene中子屏蔽Neutron shielding0.96
    氢化锂LiH中子屏蔽Neutron shielding0.82
    钨Wolfram光子屏蔽Photon shielding19.35
    铅Lead光子屏蔽Photon shielding11.34
    不锈钢Stainless steel光子屏蔽Photon shielding7.80
    Table 3. Candidate shielding materials

    材料

    Material

    安全平面的累积

    快中子注量最大值

    Maximum cumulative fast

    neutron fluence in the safety

    plane / n·cm-2

    安全平面的累积

    光子剂量最大值

    Maximum cumulative

    photon dose at the

    safety plane / rad

    屏蔽总重量

    (加后端聚乙烯)

    Total weight of shielding

    plus rear end polyethylene

    / kg

    堆芯加屏蔽重量

    Core and shielding

    weight / kg

    无(真空)None (vacuum)8.31×10137.42×106755.552 603.80
    碳化硼B4C3.27×10115.18×1051 998.513 846.76
    水Water4.78×10111.49×1061 315.443 163.70
    铍Be4.57×10111.39×1061 791.353 639.60
    聚乙烯Polyethylene2.22×10111.53×1061 294.173 142.42
    氢化锂LiH1.93×10111.57×1061 214.663 062.91
    钨Wolfram3.56×10114.78×10411 589.4413 437.69
    铅Lead1.18×10131.49×1067 106.798 955.04
    不锈钢Stainless steel6.78×10127.36×1055 124.496 972.74
    Table 4. Calculation results for the candidate materials
    材料Material

    安全平面的累积快

    中子注量最大值

    Maximum cumulative fast neutron

    fluence in the safety plane

    / n·cm-2

    安全平面的累积

    光子剂量最大值

    Maximum cumulative

    photon dose at the safety

    plane / rad

    屏蔽总重量

    (加后端聚乙烯)

    Total weight of shielding

    plus rear end polyethylene

    / kg

    堆芯加屏蔽重量

    Core and shielding

    weight / kg

    Poly-LiH-W1.80×10119.47×1042 561.764 410.02
    LiH-Poly-W1.86×10118.34×1042 608.614 456.86
    Table 5. Calculation results for the two composite shielding models

    区域

    Area

    几何尺寸

    Geometric size / cm

    密度

    Density / g·cm-3

    体积

    Volume / cm3

    数目

    Number

    重量

    Weight / kg

    活性区(含热管)

    Active zone (including heat pipe)

    Φ25.73×H45

    堆芯重量1 848.25

    Weight of the core

    上(下)轴向反射层

    Upper (lower) axial reflector

    Φ25.73×H22.5

    -热管Heat pipe

    径向反射层

    Radial reflector

    Φ48×H90

    -Φ25.73×H90

    径向屏蔽层

    Radial shielding

    Φ50×H90

    -Φ48×H90

    热管(从活性区外部伸出建模)

    Heat pipes (outside the active zone)

    Φ1.5×H151.5109

    不计热管重量

    Not count the

    weight of heat pipes

    前端钨

    Front wolfram

    Φ50×H0.7

    -Φ25.73×H0.7

    19.354 041.902156.42

    前端聚乙烯

    Front Polyethylene

    Φ25.73×H0.7

    -热管Heat pipe

    0.9621 183.7522.28

    聚乙烯①

    Polyethylene①

    R1 25.73×R2 50×H13.6

    -热管Heat pipe

    0.96258 068.202111.72

    水①

    Water①

    Φ50×H3.6

    -热管Heat pipe

    126 874.75253.75

    不锈钢套管①

    Stainless steel sleeve①

    Φ50×H4.2

    -Φ50×H3.6

    -热管Heat pipe

    7.804 479.13269.90

    聚乙烯②

    Polyethylene②

    R1 50×R2 25.73×H14.3

    -热管Heat pipe

    0.96261 057.012117.47

    水②

    Water②

    Φ50×H3.6

    -热管Heat pipe

    126 874.75253.75

    不锈钢套管②

    Stainless Steel Sleeve②

    Φ50×H4.2

    50×H3.6

    -热管Heat pipe

    7.804 479.13269.90

    后端钨

    Back end wolfram

    Φ50×H0.5

    -热管Heat pipe

    19.353 732.602144.45

    温差发电(区域中心与活性区

    中心距离为139.5 cm)

    Thermoelectric power generation (the distance between the center of the area and the center of the active zone is 139.5 cm)

    X45×Y49.5×Z114

    -热管Heat pipe

    不计

    Not count

    后端聚乙烯(壳体内)

    Back end polyethylene (inside the shell)

    Φ50×H150.962117 809.722226.67

    后端聚乙烯(壳体外)

    Back end polyethylene (outside the shell)

    Φ100×H4

    -Φ75×H4

    0.96254 977.872105.78

    内壳体

    Inner shell

    Φ110×H550

    -Φ100×H540

    不计

    Not count

    外壳体

    Outer shell

    Φ150×H550

    -Φ140×H550

    不计

    Not count

    海水(双壳体内)

    Sea water (in double shell)

    Φ140×H550

    -Φ110×H550

    不计

    Not count

    海水(舱室外)

    Sea water (outside the cabin)

    X240×Y240×Z640

    -Φ200×H640

    不计

    Not count

    仪器打混

    Instrument mix

    其他区域

    Other areas

    不计

    Not count

    总和SumX240×Y240×Z6402 960.35
    Table 6. Parameters of the optimized shielding design

    满功率运行时安全平面

    的累积快中子注量

    Cumulative fast neutron fluence in the safety plane under

    full-power operation

    / n·cm-2

    满功率运行时安全

    平面的累积光子剂量

    Cumulative photon dose

    in the safety plane under

    full-power operation

    / rad

    停堆条件下,阴影区

    总剂量率

    Total dose rate in the

    shaded area under

    shutdown conditions

    / mSv·h-1

    堆芯加屏蔽重量

    Core and shielding

    weight / kg

    设计要求

    Design requirements

    ≤ 1012≤ 106≤ 0.007 50≤ 3 000.00

    最终方案

    Final scheme

    9.48×1011

    (maximum)

    7.29×105

    (maximum)

    0.004 49

    (maximum)

    2 960.35
    Table 7. Shielding performance of the heat pipe nuclear reactor
    Yongping WANG, Yushan TAO, Yunqin WU, Youqi ZHENG, Xianan DU. Shielding design of a megawatt-scale heat pipe reactor core[J]. NUCLEAR TECHNIQUES, 2023, 46(2): 020606
    Download Citation