[1] BERGMANN H W, SPRINGERLINK. Optimization: Methods and Applications, Possibilities and Limitations: Proceedings of an International Seminar Organized by Deutsche Forschungsanstalt fr Luft- und Raumfahrt (DLR), Bonn, June 1989[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989.
[2] ZHAN C C, HUANG D D, HU X F, et al. Mechanical property enhancement of NbTiZr refractory medium-entropy alloys due to Si-induced crystalline-to-amorphous transitions[J]. Surf Coat Technol, 2022, 433: 128144.
[3] MING K S, ZHU Z W, ZHU W Q, et al. Enhancing strength and ductility via crystalline-amorphous nanoarchitectures in TiZr-based alloys[J]. Sci Adv, 2022, 8(10): eabm2884.
[4] WANG X, FU Y Q, WU Y D, et al. Crystalline-amorphous-crystalline two-step phase transformation and the resulting supra-nano structure in a metastable iron-based alloy[J]. Acta Mater, 2024, 266: 119690.
[5] SALMA U, RAFFERTY A, HASANUZZAMAN M. Microstructural development for optimum fracture toughness of Al2O3-3YSZ composites[J]. Adv Mater Process Technol, 2022, 8(4): 4229-4243.
[6] BASHA S A, CHANDRA K S, SARKAR D. Salient features of SrO doping in Al2O3-5wt.% ZrO2 reaction sintered composite ceramics[J]. J Alloys Compd, 2020, 829: 154559.
[7] FU L, LI L, CHENG Y X, et al. Influences of powder morphology on the densification and microstructure of a ZrO2-based nanocrystalline glass-ceramic[J]. J Am Ceram Soc, 2023, 106(1): 722-737.
[8] FU L, WANG Y R, RIEKEHR L, et al. Observation of yttrium oxide segregation in a ZrO2-SiO2 glass-ceramic at nanometer dimensions[J]. J Am Ceram Soc, 2020, 103(12): 7147-7158.
[9] RADINGOANA P M, GUILLEMET-FRITSCH S, NOUDEM J, et al. Microstructure and thermoelectric properties of Al-doped ZnO ceramic prepared by spark plasma sintering[J]. J Eur Ceram Soc, 2023, 43(3): 1009-1016.
[10] XU C L, UAHENGO G, RUDNICKI C, et al. Nanocrystalline yttria-stabilized zirconia ceramics for cranial window applications[J]. ACS Appl Bio Mater, 2022, 5(6): 2664-2675.
[11] ZHANG Y T, HUANG Z Y, QI J Q, et al. Rapid fabrication of fine-grained Gd2-xNdxZr2-5xCe5xO7 ceramics by microwave sintering[J]. J Alloys Compd, 2019, 781: 710-715.
[12] SUMITHRA S, ANNAPOORANI K, ELLMORE A, et al. Microwave assisted processing of X8R nanocrystalline BaTiO3 based ceramic capacitors and multilayer devices[J]. Open Ceram, 2022, 9: 100214.
[13] COLOGNA M, RASHKOVA B, RAJ R. Flash sintering of nanograin zirconia in <5 s at 850℃[J]. J Am Ceram Soc, 2010, 93(11): 3556-3559.
[16] MCLAREN C, HEFFNER W, TESSAROLLO R, et al. Electric field-induced softening of alkali silicate glasses[J]. Appl Phys Lett, 2015, 107(18): 4101-4105
[17] PINTER L, BIESUZ M, SGLAVO V M, et al. DC-electro softening in soda lime silicate glass: An electro-thermal analysis[J]. Scr Mater, 2018, 151: 14-18.
[18] XU X Q, YANG Y, WANG X G, et al. Low-temperature preparation of Al2O3-ZrO2 nanoceramics via pressureless sintering assisted by amorphous powders[J]. J Alloys Compd, 2019, 783: 806-812.
[19] XU X J, XU X Q, LIU J C, et al. Low-temperature fabrication of Al2 O3-ZrO2 (Y2O3) nanocomposites through hot pressing of amorphous powders[J]. Ceram Int, 2016, 42(13): 15065-15071.
[20] ZHANG H, WANG Y G, LIU J L, et al. Reaction assisted flash sintering of Al2O3-YAG ceramic composites with eutectic composition[J]. Ceram Int, 2019, 45(10): 13551-13555.
[21] YAO S, LIU Y S, LIU D G, et al. Effect of the Al2O3 content on the microstructure evolution of flash-sintered Al2O3-8YSZ ceramics[J]. Open Ceram, 2023, 16: 100468.
[22] ZHU F X, PENG X Y, LIU J L, et al. Surface temperature distribution on dense 8YSZ ceramics during the steady stage in AC flash sintering[J]. Ceram Int, 2021, 47(2): 2884-2887.
[23] ROSENFLANZ A, FREY M, ENDRES B, et al. Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides[J]. Nature, 2004, 430(7001): 761-764.
[24] JANG B K, MATSUBARA H. Influence of porosity on hardness and Young’s modulus of nanoporous EB-PVD TBCs by nanoindentation[J]. Mater Lett, 2005, 59(27): 3462-3466.
[25] ZHANG W, ZHANG J. Effect of sintering additives of carbon black, SiC, Al2O3, and Al2O3+Y2O3 on microstructure and mechanical properties of B4C ceramics[J]. J Korean Ceram Soc, 2024:1-12.
[26] WANG J L, WANG S H, YANG Y K, et al. Nanostructured amorphous Al2O3-ZrO2 (La2O3) ceramics with plastic deformation via interface inducing hierarchical shear bands[J]. Int J Plast, 2024, 181: 104103.
[27] XU X Q, LIU J C, WANG Y, et al. Preparation of dense amorphous Al2O3-ZrO2-Y2O3 by two-step hot pressing[J]. J Eur Ceram Soc, 2015, 35(13): 3755-3759.
[28] WANG Y, LIU J C, GUO A R, et al. High pressure crystallization of amorphous Al2O3-ZrO2 ceramics[J]. RARE METAL Mater ENGINEERING, 2013, 42: 366-369.
[29] AZAR M, PALMERO P, LOMBARDI M, et al. Effect of initial particle packing on the sintering of nanostructured transition alumina[J]. J Eur Ceram Soc, 2008, 28(6): 1121-1128.
[30] KUMAR K N P, KEIZER K, BURGGRAAF A J, et al. Densification of nanostructured titania assisted by a phase transformation[J]. Nature, 1992, 358: 48-51.
[31] YAVETSKIY R P, BAUMER V N, DANYLENKO M I, et al. Transformation-assisted consolidation of Y2O3: Eu3+ nanospheres as a concept to optical nanograined ceramics[J]. Ceram Int, 2014, 40(2): 3561-3569.
[32] BOWEN P, CARRY C. From powders to sintered pieces: Forming, transformations and sintering of nanostructured ceramic oxides[J]. Powder Technol, 2002, 128(2/3): 248-255.