• Advanced Photonics Nexus
  • Vol. 4, Issue 3, 036008 (2025)
Xiaoshuai Ma1,†, Tianjian Lv1, Dongxu Zhu1, Zhuoren Wan1..., Ming Yan1,2,* and Heping Zeng1,2,3,*|Show fewer author(s)
Author Affiliations
  • 1East China Normal University, Hainan Institute, School of Physics and Electronic Science, State Key Laboratory of Precision Spectroscopy, Shanghai, China
  • 2Chongqing Institute of East China Normal University, Chongqing Key Laboratory of Precision Optics, Chongqing, China
  • 3Jinan Institute of Quantum Technology, Jinan, China
  • show less
    DOI: 10.1117/1.APN.4.3.036008 Cite this Article Set citation alerts
    Xiaoshuai Ma, Tianjian Lv, Dongxu Zhu, Zhuoren Wan, Ming Yan, Heping Zeng, "Ultra-rapid broadband mid-infrared spectral tuning and sensing," Adv. Photon. Nexus 4, 036008 (2025) Copy Citation Text show less
    References

    [1] M. Lackner. Tunable diode laser absorption spectroscopy (TDLAS) in the process industries: a review. Rev. Chem. Eng., 23, 65-147(2007). https://doi.org/10.1515/REVCE.2007.23.2.65

    [2] S. Karpf et al. A time-encoded technique for fibre-based hyperspectral broadband stimulated Raman microscopy. Nat. Commun., 6, 6784(2015). https://doi.org/10.1038/ncomms7784

    [3] Y. S. Jiang, S. Karpf, B. Jalali. Time-stretch lidar as a spectrally scanned time-of-flight ranging camera. Nat. Photonics, 14, 14-18(2020). https://doi.org/10.1038/s41566-019-0548-6

    [4] N. R. Newbury, I. Coddington, W. Swann. Sensitivity of coherent dual-comb spectroscopy. Opt. Express, 18, 7929-7945(2010). https://doi.org/10.1364/OE.18.007929

    [5] I. Coddington, N. Newbury, W. Swann. Dual-comb spectroscopy. Optica, 3, 414-426(2016). https://doi.org/10.1364/OPTICA.3.000414

    [6] Z. Chen et al. A phase-stable dual-comb interferometer. Nat. Commun., 9, 3035(2018). https://doi.org/10.1038/s41467-018-05509-6

    [7] X. Ren et al. Dual-comb optomechanical spectroscopy. Nat. Commun., 14, 5037(2023). https://doi.org/10.1038/s41467-023-40771-3

    [8] G. Millot et al. Frequency-agile dual-comb spectroscopy. Nat. Photonics, 10, 27-30(2016). https://doi.org/10.1038/nphoton.2015.250

    [9] I. Coddington, W. Swann, N. Newbury. Coherent dual-comb spectroscopy at high signal-to-noise ratio. Phys. Rev. A: At. Mol. Opt. Phys., 82, 043817(2010). https://doi.org/10.1103/PhysRevA.82.043817

    [10] G. Ycas et al. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2  μm. Nat. Photonics, 12, 202-208(2018). https://doi.org/10.1038/s41566-018-0114-7

    [11] D. Jeong et al. Spatio-spectral 4D coherent ranging using a flutter-wavelength-swept laser. Nat. Commun., 15, 1110(2024). https://doi.org/10.1038/s41467-024-45297-w

    [12] M. Corato-Zanarella et al. Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths. Nat. Photonics, 17, 157-164(2023). https://doi.org/10.1038/s41566-022-01120-w

    [13] J. Haas, B. Mizaikoff. Advances in mid-infrared spectroscopy for chemical analysis. Annu. Rev. Anal. Chem., 9, 45-68(2016). https://doi.org/10.1146/annurev-anchem-071015-041507

    [14] B. M. Walsh, H. R. Lee, N. P. Barnes. Mid infrared lasers for remote sensing applications. J. Lumin., 169, 400-405(2016). https://doi.org/10.1016/j.jlumin.2015.03.004

    [15] S. Jiang et al. High-resolution mid-infrared single-photon upconversion ranging. Photonics Res., 12, 1294-1302(2024). https://doi.org/10.1364/PRJ.522253

    [16] J. Fang et al. Wide-field mid-infrared hyperspectral imaging beyond video rate. Nat. Commun., 15(2024). https://doi.org/10.1038/s41467-024-46274-z

    [17] C. Gmachl et al. Recent progress in quantum cascade lasers and applications. Rep. Prog. Phys., 64, 1533(2001). https://doi.org/10.1088/0034-4885/64/11/204

    [18] M. S. Vitiello et al. Quantum cascade lasers: 20 years of challenges. Opt. Express, 23, 5167-5182(2015). https://doi.org/10.1364/OE.23.005167

    [19] G. Wysocki et al. Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications. Appl. Phys. B, 81, 769-777(2005). https://doi.org/10.1007/s00340-005-1965-4

    [20] A. Lyakh et al. External cavity quantum cascade lasers with ultra rapid acousto-optic tuning. Appl. Phys. Lett., 106, 141101(2015). https://doi.org/10.1063/1.4917241

    [21] P. Täschler et al. Femtosecond pulses from a mid-infrared quantum cascade laser. Nat. Photonics, 15, 919-924(2021). https://doi.org/10.1038/s41566-021-00894-9

    [22] D. Revin et al. Active mode locking of quantum cascade lasers in an external ring cavity. Nat. Commun., 7, 11440(2016). https://doi.org/10.1038/ncomms11440

    [23] H. Li et al. Graphene-coupled terahertz semiconductor lasers for enhanced passive frequency comb operation. Adv. Sci., 6, 1900460(2019). https://doi.org/10.1002/advs.201900460

    [24] M. Vainio, L. Halonen. Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy. Phys. Chem. Chem. Phys., 18, 4266-4294(2016). https://doi.org/10.1039/C5CP07052J

    [25] Y. Jin et al. Broadly, independent-tunable, dual-wavelength mid-infrared ultrafast optical parametric oscillator. Opt. Express, 23, 20418-20427(2015). https://doi.org/10.1364/OE.23.020418

    [26] M. Shoshin et al. Fiber-based mid-infrared frequency-swept laser at 50 MScans/s via frequency down-conversion of time-stretched pulses(2025).

    [27] X. Ren et al. Mid-infrared electro-optic dual-comb spectroscopy with feedforward frequency stepping. Opt. Lett., 45, 776-779(2020). https://doi.org/10.1364/OL.385464

    [28] M. Yan et al. Mid-infrared dual-comb spectroscopy with electro-optic modulators. Light Sci. Appl., 6, e17076(2017). https://doi.org/10.1038/lsa.2017.76

    [29] Y. Zhang et al. Delay-spectral focusing dual-comb coherent Raman spectroscopy for rapid detection in the high-wavenumber region. ACS Photonics, 9, 1385-1394(2022). https://doi.org/10.1021/acsphotonics.2c00136

    [30] T. Lv et al. Ultrahigh-speed coherent anti-stokes Raman spectroscopy with a hybrid dual-comb source. ACS Photonics, 10, 2964-2971(2023). https://doi.org/10.1021/acsphotonics.3c00755

    [31] G. Veitas, R. Danielius, E. Schreiber. Efficient generation of <3-cm−1 bandwidth mid-IR pulses by difference-frequency mixing of chirped pulses. J. Opt. Soc. Am. B, 19, 1411-1418(2002). https://doi.org/10.1364/JOSAB.19.001411

    [32] F. O. Koller et al. Generation of narrowband subpicosecond mid-infrared pulses via difference frequency mixing of chirped near-infrared pulses. Opt. Lett., 32, 3339-3341(2007). https://doi.org/10.1364/OL.32.003339

    [33] A. Bartels et al. Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling. Rev. Sci. Instrum., 78, 035107(2007). https://doi.org/10.1063/1.2714048

    [34] L. Antonucci et al. Asynchronous optical sampling with arbitrary detuning between laser repetition rates. Opt. Express, 20, 17928-17937(2012). https://doi.org/10.1364/OE.20.017928

    [35] O. Kliebisch, D. C. Heinecke, T. Dekorsy. Ultrafast time-domain spectroscopy system using 10 GHz asynchronous optical sampling with 100 kHz scan rate. Opt. Express, 24, 29930-29940(2016). https://doi.org/10.1364/OE.24.029930

    [36] Z. Wen et al. Broadband up-conversion mid-infrared time-stretch spectroscopy. Laser Photonics Rev., 18, 2300630(2024). https://doi.org/10.1002/lpor.202300630

    [37] R. Huber et al. Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm. Opt. Express, 13, 10523-10538(2005). https://doi.org/10.1364/OPEX.13.010523

    [38] M. Mohseni, C. Polzer, T. Hellerer. Resolution of spectral focusing in coherent Raman imaging. Opt. Express, 26, 10230-10241(2018). https://doi.org/10.1364/OE.26.010230

    [39] D. Konnov et al. High-resolution frequency-comb spectroscopy with electro-optic sampling and instantaneous octave-wide coverage across mid-IR to THz at a video rate. APL Photonics, 8, 110801(2023). https://doi.org/10.1063/5.0165879

    [40] A. Mahjoubfar et al. Time stretch and its applications. Nat. Photonics, 11, 341-351(2017). https://doi.org/10.1038/nphoton.2017.76

    [41] K. Hashimoto et al. Upconversion time-stretch infrared spectroscopy. Light Sci. Appl., 12, 48(2023). https://doi.org/10.1038/s41377-023-01096-4

    [42] A. Kawai et al. Time-stretch infrared spectroscopy. Commun. Phys., 3, 152(2020). https://doi.org/10.1038/s42005-020-00420-3

    [43] Y. Hu et al. High-efficiency and broadband on-chip electro-optic frequency comb generators. Nat. Photonics, 16, 679-685(2022). https://doi.org/10.1038/s41566-022-01059-y

    Xiaoshuai Ma, Tianjian Lv, Dongxu Zhu, Zhuoren Wan, Ming Yan, Heping Zeng, "Ultra-rapid broadband mid-infrared spectral tuning and sensing," Adv. Photon. Nexus 4, 036008 (2025)
    Download Citation