• Photonics Research
  • Vol. 13, Issue 6, 1438 (2025)
Tianhong Liu1,2, Guohao Yang1,2, Jinping Li1,*, and Cunzhu Tong1
Author Affiliations
  • 1State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1364/PRJ.544561 Cite this Article Set citation alerts
    Tianhong Liu, Guohao Yang, Jinping Li, Cunzhu Tong, "High-speed avalanche photodiodes for optical communication," Photonics Res. 13, 1438 (2025) Copy Citation Text show less
    References

    [1] D. J. Richardson, J. M. Fini, L. E. Nelson. Space-division multiplexing in optical fibres. Nat. Photonics, 7, 354-362(2013).

    [2] T. Mizuno, H. Takara, K. Shibahara. Dense space division multiplexed transmission over multicore and multimode fiber for long-haul transport systems. J. Lightwave Technol., 34, 1484-1493(2016).

    [3] G. E. Keiser. A review of WDM technology and applications. Opt. Fiber Technol., 5, 3-39(1999).

    [4] A. F. Almutairi, A. Krishna. Filtered-orthogonal wavelet division multiplexing (F-OWDM) technique for 5G and beyond communication systems. Sci. Rep., 12, 4607(2022).

    [5] F. Hamaoka, M. Nakamura, M. Takahashi. 173.7-Tb/s triple-band WDM transmission using 124-channel 144-GBaud signals with SE of 9.33  b/s/Hz. 2023 Optical Fiber Communications Conference and Exhibition (OFC), Th3F.2(2023).

    [6] S. Berdagué, P. Facq. Mode division multiplexing in optical fibers. Appl. Opt., 21, 1950-1955(1982).

    [7] L.-W. Luo, N. Ophir, C. P. Chen. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun., 5, 3069(2014).

    [8] J. Wang, S. Chen, D. Dai. Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects. Opt. Lett., 39, 6993-6996(2014).

    [9] B. Wang, J. Mu. High-speed Si-Ge avalanche photodiodes. PhotoniX, 3, 8(2022).

    [10] G. Der-Feng, W. C. Liu, J. H. Tsai. An optoelectronic switch. 2009 IEEE International Vacuum Electronics Conference, 395-396(2009).

    [11] P. Dumais, D. J. Goodwill, D. Celo. Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package. J. Lightwave Technol., 36, 233-238(2018).

    [12] H. Wei, Z. Wang, X. Tian. Cascaded logic gates in nanophotonic plasmon networks. Nat. Commun., 2, 387(2011).

    [13] M. Yildirim, N. U. Dinc, I. Oguz. Nonlinear processing with linear optics. Nat. Photonics, 18, 1076-1082(2024).

    [14] P. Sanjari, F. Aflatouni. An integrated photonic-assisted phased array transmitter for direct fiber to mm-wave links. Nat. Commun., 14, 1414(2023).

    [15] M. Gagino, A. Millan-Mejia, L. Augustin. Integrated optical phased array with on-chip amplification enabling programmable beam shaping. Sci. Rep., 14, 9590(2024).

    [16] C. Yao, M. Chen, T. Yan. Broadband picometer-scale resolution on-chip spectrometer with reconfigurable photonics. Light Sci. Appl., 12, 156(2023).

    [17] C. Yao, K. Xu, W. Zhang. Integrated reconstructive spectrometer with programmable photonic circuits. Nat. Commun., 14, 6376(2023).

    [18] Z. Zhao, J. Liu, Y. Liu. High-speed photodetectors in optical communication system. J. Semicond., 38, 121001(2017).

    [19] L. Minelli, A. Abdellatif, R. Gaudino. Optimization of 50G-PON APD-based receivers. 2022 Italian Conference on Optics and Photonics (ICOP, 1-4(2022).

    [20] D. Zhang, D. Nesset, D. Liu. 50  Gbps passive optical network (50G-PON) for broadband access and beyond. 2022 27th OptoElectronics and Communications Conference (OECC) and 2022 International Conference on Photonics in Switching and Computing (PSC), 1-4(2022).

    [21] J. C. Campbell. Evolution of low-noise avalanche photodetectors. IEEE J. Sel. Topics Quantum Electron., 28, 3800911(2022).

    [22] C. Hu, K. A. Anselm, B. G. Streetman. Noise characteristics of thin multiplication region GaAs avalanche photodiodes. Appl. Phys. Lett., 69, 3734-3736(1996).

    [23] D. J. Eaglesham, M. Cerullo. Dislocation-free Stranski-Krastanow growth of Ge on Si(100). Phys. Rev. Lett., 64, 1943-1946(1990).

    [24] I. Pasternak, M. Wesolowski, I. Jozwik. Graphene growth on Ge(100)/Si(100) substrates by CVD method. Sci. Rep., 6, 21773(2016).

    [25] Y. Hu, D. Liang, K. Mukherjee. III/V-on-Si MQW lasers by using a novel photonic integration method of regrowth on a bonding template. Light Sci. Appl., 8, 93(2019).

    [26] J. Sun, J. Lin, M. Zhou. High-power, electrically-driven continuous-wave 1.55-μm Si-based multi-quantum well lasers with a wide operating temperature range grown on wafer-scale InP-on-Si (100) heterogeneous substrate. Light Sci. Appl., 13, 71(2024).

    [27] A. Beling, J. C. Campbell. InP-based high-speed photodetectors. J. Lightwave Technol., 27, 343-355(2009).

    [28] Y. Liang, C. P. Veeramalai, G. Lin. A review on III–V compound semiconductor short wave infrared avalanche photodiodes. Nanotechnology, 33, 222003(2022).

    [29] J. C. Campbell. Recent advances in telecommunications avalanche photodiodes. J. Lightwave Technol., 25, 109-121(2007).

    [30] R. J. McIntyre. Multiplication noise in uniform avalanche diodes. IEEE Trans. Electron Devices, ED-13, 164-168(1966).

    [31] G. Liu, W. Chen, L. Liu. A theory study of the multiplication characteristics of InP/InGaAs avalanche photodiodes with double multiplication layers and double charge layers. Opt. Commun., 374, 114-118(2016).

    [32] M. M. Hayat, W. L. Sargeant, B. E. A. Saleh. Effect of dead space on gain and noise in Si and GaAs avalanche photodiodes. IEEE J. Quantum Electron., 28, 1360-1365(1992).

    [33] K. Li, X. Duan, W. Yuan. High-speed and low dark current InGaAs/InAlAs avalanche photodiodes with gradually-doped p-type absorption layers. 2022 20th International Conference on Optical Communications and Networks (ICOCN), 1-3(2022).

    [34] R. B. Emmons. Avalanche-photodiode frequency response. J. Appl. Phys., 38, 3705-3714(1967).

    [35] G. S. Kinsey, J. C. Campbell, A. G. Dentai. Waveguide avalanche photodiode operating at 1.55  μm with a gain-bandwidth product of 320  GHz. IEEE Photonics Technol. Lett., 13, 842-844(2001).

    [36] W. Jian, F. Xia, S. R. Forrest. A high-responsivity high-bandwidth asymmetric twin-waveguide coupled InGaAs-InP-InAlAs avalanche photodiode. IEEE Photonics Technol. Lett., 14, 1590-1592(2002).

    [37] S. Demiguel, X. Zheng, N. Li. High-responsivity and high-speed evanescently-coupled avalanche photodiodes. Electron. Lett., 29, 1848-1849(2003).

    [38] S. Shimizu, K. Shiba, T. Nakata. 40  Gbit/s waveguide avalanche photodiode with p-type absorption layer and thin InAlAs multiplication layer. Electron. Lett., 43, 476-477(2007).

    [39] M. Nada, Y. Muramoto, H. Yokoyama. Inverted InAlAs/InGaAs avalanche photodiode with low–high–low electric field profile. Jpn. J. Appl. Phys., 51, 02BG03(2012).

    [40] M. Nada, T. Yoshimatsu, Y. Muramoto. Design and performance of high-speed avalanche photodiodes for 100-Gb/s systems and beyond. J. Lightwave Technol., 33, 984-990(2015).

    [41] M. Nada, T. Yoshimatsu, Y. Muramoto. 106-Gbit/s PAM4 40-km transmission using an avalanche photodiode with 42-GHz bandwidth. 2018 Optical Fiber Communications Conference and Exposition (OFC), W4D.2(2018).

    [42] H. Wang, X. Yang, R. Wang. Low dark current and high gain-bandwidth product of avalanche photodiodes: optimization and realization. Opt. Express, 28, 16211-16229(2020).

    [43] Z. Ahmad, Y. M. Liao. Avalanche photodiodes with dual multiplication layers for high-speed and wide dynamic range performances. Photonics, 8, 98(2021).

    [44] T. Okimoto, K. Ashizawa, H. Mori. 106-Gb/s waveguide AlInAs/GaInAs avalanche photodiode with butt-joint coupling structure. 2022 Optical Fiber Communications Conference and Exhibition (OFC), W3D.2(2022).

    [45] J. W. Shi, Y. S. Wu, Z. R. Li. Impact-ionization-induced bandwidth-enhancement of a Si–SiGe-based avalanche photodiode operating at a wavelength of 830  nm with a gain-bandwidth product of 428  GHz. IEEE Photonics Technol. Lett., 19, 474-476(2007).

    [46] W. S. Zaoui, H. W. Chen, J. E. Bowers. Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840  GHz gain-bandwidth-product. Opt. Express, 17, 12641-12649(2009).

    [47] M. Huang, T. Shi, P. Cai. 25  Gb/s normal incident Ge/Si avalanche photodiode. 2014 The European Conference on Optical Communication (ECOC), 1-3(2014).

    [48] M. Huang, P. Cai, S. Li. 56 GHz waveguide Ge/Si avalanche photodiode. 2018 Optical Fiber Communications Conference and Exposition (OFC), W4D.6(2018).

    [49] S. A. Srinivasan, M. Berciano, P. De Heyn. 27  GHz silicon-contacted waveguide-coupled Ge/Si avalanche photodiode. J. Lightwave Technol., 38, 2044-3050(2020).

    [50] M. Huang, K. Lee, K. Magruder. 200  Gb/s per lane Ge/Si waveguide avalanche photodiode. 2022 European Conference on Optical Communication (ECOC), Th2E.2(2022).

    [51] Y. Wang, F. Gao, C. Li. Lateral PIN Ge/Si avalanche photodiode for high-speed, low-budget silicon photonics interconnects. 2022 Asia Communications and Photonics Conference (ACP), 1441-1443(2022).

    [52] Y. Xiang, H. Cao, C. Liu. High-speed waveguide Ge/Si avalanche photodiode a gain-bandwidth product 615  GHz. Optica, 9, 762-769(2022).

    [53] Y. Shi, X. Li, G. Chen. Avalanche photodiode with ultrahigh gain–bandwidth product of 1,033  GHz. Nat. Photonics, 18, 610-616(2024).

    [54] Y. Wang, S. Sui, F. Gao. Enhanced bandwidth of a lateral-pin Ge/Si avalanche photodiode using inductive gain peaking. Optics Laser Technol., 171, 110445(2024).

    [55] A. Rouvie, D. É. Carpentier, N. Lagay. High gain × bandwidth product over 140-GHz planar junction AlInAs avalanche photodiodes. IEEE Photonics Technol. Lett., 20, 455-457(2008).

    [56] M. Lahrichi, G. Glastre, E. Derouin. 240-GHz gain-bandwidth product back-side illuminated AlInAs avalanche photodiodes. IEEE Photonics Technol. Lett., 22, 1373-1375(2010).

    [57] S. Wang, H. Ye, L. Y. Geng. Planar InAlAs/InGaAs avalanche photodiode with 360  GHz gain × bandwidth product. Chin. Phys. B, 32, 098507(2023).

    [58] C. Lenox, H. Nie, P. Yuan. Resonant-cavity InGaAs-InAlAs avalanche photodiodes with gain-bandwidth product of 290  GHz. IEEE Photonics Technol. Lett., 11, 1162-1164(1999).

    [59] M. Nada, Y. Yamada, H. Matsuzaki. Responsivity-bandwidth limit of avalanche photodiodes: toward future ethernet systems. IEEE J. Sel. Topics Quantum Electronics, 24, 3800811(2018).

    [60] T. Ishibashi, S. Kodama, N. S. N. Shimizu. High-speed response of uni-traveling-carrier photodiodes. Jpn. J. Appl. Phys., 36, 6263(1997).

    [61] M. Nada, F. Nakajima, T. Yoshimatsu. Inverted p-down design for high-speed photodetectors. Photonics, 8, 39(2021).

    [62] M. Nada, Y. Muramoto, H. Yokoyama. Study of lowering onset gain for a high-speed InGaAs/InAlAs avalanche photodiode. 2013 International Conference on Indium Phosphide and Related Materials (IPRM), 1-2(2013).

    [63] M. Nada, Y. Yamada, H. Matsuzaki. A high-linearity avalanche photodiodes with a dual-carrier injection structure. IEEE Photonics Technol. Lett., 29, 1828-1831(2017).

    [64] T. Shi, B. Xiong, C. Sun. Back-to-back UTC-PDs with high responsivity, high saturation current and wide bandwidth. IEEE Photonics Technol. Lett., 25, 136-139(2013).

    [65] H. Fukano, Y. Muramoto, Y. Matsuoka. Edge-illuminated refracting-facet photodiode with large bandwidth and high output voltage. Jpn. J. Appl. Phys., 39, 2360(2000).

    [66] T. Okimoto, K. Ashizawa, K. Ebihara. High responsivity and reliability of InP-based waveguide avalanche photodiodes with butt-joint coupled structure. J. Lightwave Technol., 42, 2809-2816(2024).

    [67] Y. Kang, M. Zadka, S. Litski. Epitaxially-grown Ge/Si avalanche photodiodes for 1.3  μm light detection. Opt. Express, 16, 9365-9371(2008).

    [68] Y. Kang, H. D. Liu, M. Morse. Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain–bandwidth product. Nat. Photonics, 3, 59-63(2009).

    [69] I. Janeković, T. Knežević, T. Suligoj. Optimization of floating guard ring parameters in separate-absorption-and-multiplication silicon avalanche photodiode structure. 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 37-41(2015).

    [70] M. Huang, S. Li, P. Cai. Germanium on silicon avalanche photodiode. IEEE J. Sel. Topics Quantum Electron., 24, 3800911(2018).

    [71] G. Kim, S. Kim, S. A. Kim. NDR-effect vertical-illumination-type Ge-on-Si avalanche photodetector. Opt. Lett., 43, 5583-5586(2018).

    [72] B. Wang, Z. Huang, W. V. Sorin. A low-voltage Si-Ge avalanche photodiode for high-speed and energy efficient silicon photonic links. J. Lightwave Technol., 36, 3580-3585(2018).

    [73] M. Huang, K. Magruder, Y. Malinge. Recess-type waveguide integrated germanium on silicon avalanche photodiode. 2021 Optical Fiber Communications Conference and Exhibition (OFC), 1-3(2021).

    [74] Y. Yuan, Z. Huang, X. Zeng. High responsivity Si-Ge waveguide avalanche photodiodes enhanced by loop reflector. IEEE J. Sel. Topics Quantum Electronics, 28, 0001701(2022).

    [75] S. A. Srinivasan, J. Lambrecht, D. Guermandi. 56  Gb/s NRZ O-band hybrid BiCMOS-silicon photonics receiver using Ge/Si avalanche photodiode. J. Lightwave Technol., 39, 1409-1415(2021).

    [76] D. Liu, P. Zhang, B. Tang. High-performance waveguide-integrated Ge/Si avalanche photodetector with lateral multiplication region. Micromachines, 13, 649(2022).

    [77] Y. Xiang, H. Cao, C. Liu. High-performance waveguide Ge/Si avalanche photodiode with a lateral separate-absorption-charge-multiplication structure. Opt. Express, 30, 11288-11297(2022).

    [78] H. Cao, Y. Xiang, W. Sun. Waveguide Ge/Si avalanche photodetector with ultra-high gain-bandwidth product of 1440  GHz. 2023 Asia Communications and Photonics Conference/2023 International Photonics and Optoelectronics Meetings (ACP/POEM), 1-3(2023).

    [79] Y. Shi, M. Zou, Z. Li. Ultrafast 67  GHz waveguide-coupled silicon-germanium avalanche photodiode. 2024 Optical Fiber Communications Conference and Exhibition (OFC), 1-3(2024).

    [80] S. Assefa, F. Xia, Y. A. Vlasov. Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects. Nature, 464, 80-84(2010).

    [81] J. Zhang, B. P. P. Kuo, S. Radic. 64  Gb/s PAM4 and 160  Gb/s 16QAM modulation reception using a low-voltage Si-Ge waveguide-integrated APD. Opt. Express, 28, 23266-23273(2020).

    [82] H. T. Chen, J. Verbist, P. Verheyen. 25-Gb/s 1310-nm optical receiver based on a sub-5-V waveguide-coupled germanium avalanche photodiode. IEEE Photonics J., 7, 7902909(2015).

    [83] L. Virot, P. Crozat, J. M. Fédéli. Germanium avalanche receiver for low power interconnects. Nat. Commun., 5, 4957(2014).

    [84] T. Nakata, T. Takeuchi, K. Makita. High-speed and high-sensitivity waveguide InAlAs avalanche photodiodes for 10–40  Gb/s receivers. 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 770-771(2001).

    [85] M. Nada, H. Yokoyama, Y. Muramoto. Lateral scalability of inverted p-down InAlAs/InGaAs avalanche photodiode. 2012 International Conference on Indium Phosphide and Related Materials, 215-218(2012).

    [86] S. Xie, S. Zhang, C. H. Tan. InGaAs/InAlAs avalanche photodiode with low dark current for high-speed operation. IEEE Photonics Technol. Lett., 27, 1745-1748(2015).

    [87] S.-L. Wu, J. M. Wun. High-speed In0.52Al0.48As based avalanche photodiode with top-illuminated design for 100  Gb/s ER-4 system. J. Lightwave Technol., 36, 5505-5510(2018).

    [88] P. J. Lin, W. J. Ho, J. J. Liu. High-speed 1550-nm avalanche photodiode based on InAlAs-multiplicaltion and mesa-structure. 2020 Opto-Electronics and Communications Conference (OECC), 1-3(2020).

    [89] Y. Peng, Y. Yuan, W. V. Sorin. All-silicon microring avalanche photodiodes with a > 65  A/W response. Opt. Lett., 48, 1315-1318(2023).

    [90] Y. Peng, Y. Yuan, W. V. Sorin. An 8 × 160  Gb s−1 all-silicon avalanche photodiode chip. Nat. Photonics, 18, 928-934(2024).

    [91] J. Zheng, Y. Yuan, Y. Tan. Digital alloy InAlAs avalanche photodiodes. J. Lightwave Technol., 36, 3580-3585(2018).

    [92] W. Wang, J. Yao, L. Li. High-speed InAlAs digital alloy avalanche photodiode. Appl. Phys. Lett., 123, 191102(2023).

    [93] X. Yi, S. Xie, B. Liang. Extremely low excess noise and high sensitivity AlAs0.56Sb0.44 avalanche photodiodes. Nat. Photonics, 13, 683-686(2019).

    [94] B. Chen, Y. Wan, Z. Xie. Low dark current high gain InAs quantum dot avalanche photodiodes monolithically grown on Si. ACS Photonics, 7, 528-533(2020).

    [95] T. Blain, V. Shulyak, M. Hopkinson. Low noise equivalent power InAs avalanche photodiodes for infrared few-photon detection. IEEE Trans. Electron Devices, 71, 3039-3044(2024).

    [96] L. W. Lim, C. H. Tan, J. S. Ng. Improved planar InAs avalanche photodiodes with reduced dark current and increased responsivity. J. Lightwave Technol., 37, 2375-2379(2019).

    [97] J. Miao, C. Wang. Avalanche photodetectors based on two-dimensional layered materials. Nano Res., 14, 1878-1888(2021).

    [98] P. Martyniuk, P. Wang, A. Rogalski. Infrared avalanche photodiodes from bulk to 2D materials. Light Sci. Appl., 12, 212(2023).

    [99] B. Kim, S. Y. Lee, H. Ko. Ultrahigh-gain colloidal quantum dot infrared avalanche photodetectors. Nat. Nanotechnol., 20, 237-245(2024).