• Bulletin of the Chinese Ceramic Society
  • Vol. 41, Issue 12, 4432 (2022)
LI Li1、2, YU Honglin3, XU Wenzhe2, and GENG Xin2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: Cite this Article
    LI Li, YU Honglin, XU Wenzhe, GENG Xin. Preparation, Microwave Absorption Properties and Oxidation Resistance of High-Entropy (Zr,Hf,Nb,Ta)C Microcuboids[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(12): 4432 Copy Citation Text show less
    References

    [2] OTTO F, YANG Y, BEI H, et al. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys[J]. Acta Materialia, 2013, 61(7): 2628-2638.

    [3] WANG Z J, GUO S, LIU C T. Phase selection in high-entropy alloys: from nonequilibrium to equilibrium[J]. Jom, 2014, 66(10): 1966-1972.

    [4] LIU D Q, ZHANG A J, JIA J G, et al. Reaction synthesis and characterization of a new class high entropy carbide (NbTaMoW)C[J]. Materials Science and Engineering: A, 2021, 804: 140520.

    [5] YE B L, WEN T Q, NGUYEN M C, et al. First-principles study, fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25)C high-entropy ceramics[J]. Acta Materialia, 2019, 170: 15-23.

    [6] ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides[J]. Nature Communications, 2015, 6: 8485.

    [7] GILD J, ZHANG Y Y, HARRINGTON T, et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics[J]. Scientific Reports, 2016, 6: 37946.

    [9] HAN X X, GIRMAN V, SEDLAK R, et al. Improved creep resistance of high entropy transition metal carbides[J]. Journal of the European Ceramic Society, 2020, 40(7): 2709-2715.

    [10] WANG K, CHEN L, XU C G, et al. Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic[J]. Journal of Materials Science & Technology, 2020, 39: 99-105.

    [11] ZHOU J Y, ZHANG J Y, ZHANG F, et al. High-entropy carbide: a novel class of multicomponent ceramics[J]. Ceramics International, 2018, 44(17): 22014-22018.

    [12] SARKER P, HARRINGTON T, TOHER C, et al. High-entropy high-hardness metal carbides discovered by entropy descriptors[J]. Nature Communications, 2018, 9: 4980.

    [13] CASTLE E, CSANDI T, GRASSO S, et al. Processing and properties of high-entropy ultra-high temperature carbides[J]. Scientific Reports, 2018, 8: 8609.

    [14] HARRINGTON T J, GILD J, SARKER P, et al. Phase stability and mechanical properties of novel high entropy transition metal carbides[J]. Acta Materialia, 2019, 166: 271-280.

    [15] YAN X L, CONSTANTIN L, LU Y F, et al. (Hf 0.2Zr 0.2Ta0.2Nb0.2Ti 0.2)C high-entropy ceramics with low thermal conductivity[J]. Journal of the American Ceramic Society, 2018, 101(10): 4486-4491.

    [16] WEI X F, LIU J X, LI F, et al. High entropy carbide ceramics from different starting materials[J]. Journal of the European Ceramic Society, 2019, 39(10): 2989-2994.

    [17] YE B L, NING S S, LIU D, et al. One-step synthesis of coral-like high-entropy metal carbide powders[J]. Journal of the American Ceramic Society, 2019, 102(10): 6372-6378.

    [18] FENG L, FAHRENHOLTZ W G, HILMAS G E. Low-temperature sintering of single-phase, high-entropy carbide ceramics[J]. Journal of the American Ceramic Society, 2019, 102(12): 7217-7224.

    [19] ZHANG Y, JIANG Z B, SUN S K, et al. Microstructure and mechanical properties of high-entropy borides derived from boro/carbothermal reduction[J]. Journal of the European Ceramic Society, 2019, 39(13): 3920-3924.

    [20] LI F, LU Y, WANG X G, et al. Liquid precursor-derived high-entropy carbide nanopowders[J]. Ceramics International, 2019, 45(17): 22437-22441.

    [21] ZHANG W M, XIANG H M, DAI F Z, et al. Achieving ultra-broadband electromagnetic wave absorption in high-entropy transition metal carbides (HE TMCs)[J]. Journal of Advanced Ceramics, 2022, 11(4): 545-555.

    [22] ZHOU D S, JIN S B, LI Y J, et al. Effect of stoichiometry on the surface energies of (100) and (111) and the crystal shape of TiCx and TiNx[J]. CrystEngComm, 2013, 15(4): 643-649.

    [23] SUN S T, FU H G, PING X L, et al. Formation mechanism and mechanical properties of titanium-doped NbC reinforced Ni-based composite coatings[J]. Applied Surface Science, 2019, 476: 914-927.

    [24] XIE L L, CHENG J, WANG T Q, et al. Mechanical wear behavior between CeO2(100), CeO2(110), CeO2(111), and silicon studied through atomic force microscopy[J]. Tribology International, 2021, 153: 106616.

    [25] XIE X W, SHEN W J. Morphology control of cobalt oxide nanocrystals for promoting their catalytic performance[J]. Nanoscale, 2009, 1(1): 50-60.

    [26] TAN Y Q, TENG Z, CHEN C, et al. Compositional effect on mechanical properties of transition-metal carbide solid solutions[J]. Ceramics International, 2021, 47(12): 16882-16890.

    [27] SLATER J C. Atomic radii in crystals[J]. The Journal of Chemical Physics, 1964, 41(10): 3199-3204.

    [28] ZHOU Y C, ZHAO B, CHEN H, et al. Electromagnetic wave absorbing properties of TMCs (TM=Ti,Zr,Hf,Nb and Ta) and high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C[J]. Journal of Materials Science & Technology, 2021, 74: 105-118.

    [29] DU Y C, LIU W W, QIANG R, et al. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites[J]. ACS Applied Materials & Interfaces, 2014, 6(15): 12997-13006.

    [30] MENG F B, WANG H G, HUANG F, et al. Graphene-based microwave absorbing composites: a review and prospective[J]. Composites Part B: Engineering, 2018, 137: 260-277.

    [31] ZHANG X, FU Z H, WANG X Q, et al. High-performance microwave absorption of hierarchical graphene-based and MWCNT-based full-carbon nanostructures[J]. Applied Surface Science, 2019, 493: 541-550.

    [32] ZUO X D, XU P, ZHANG C Y, et al. Porous magnetic carbon nanofibers (P-CNF/Fe) for low-frequency electromagnetic wave absorption synthesized by electrospinning[J]. Ceramics International, 2019, 45(4): 4474-4481.

    [33] ZHAO B, FAN B B, XU Y W, et al. Preparation of honeycomb SnO2 foams and configuration-dependent microwave absorption features[J]. ACS Applied Materials & Interfaces, 2015, 7(47): 26217-26225.

    [35] PATHAK S, DAS P, SAHU M, et al. Tantalum doping in HfO2: orthorhombic phase formation at ambient conditions and change in path of pressure-induced structural evolution[J]. High Pressure Research, 2020, 40: 434-443.

    [36] GENG X, XU W Z, HUANG X X, et al. Low-temperature synthesis and oxidation resistance of random combination of Hf, Nb, and Ta carbides microcuboids[J]. Journal of the American Ceramic Society, 2022, 105(7): 4942-4959.

    [37] SHIMADA S, YOSHIMATSU M, INAGAKI M, et al. Formation and characterization of carbon at the ZrCZrO2 interface by oxidation of ZrC single crystals[J]. Carbon, 1998, 36(7/8): 1125-1131.

    [38] SHIBAYAMA S, NISHIMURA T, MIGITA S, et al. Thermodynamic control of ferroelectric-phase formation in HfxZr1-xO2 and ZrO2[J]. Journal of Applied Physics, 2018, 124(18): 184101.

    LI Li, YU Honglin, XU Wenzhe, GENG Xin. Preparation, Microwave Absorption Properties and Oxidation Resistance of High-Entropy (Zr,Hf,Nb,Ta)C Microcuboids[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(12): 4432
    Download Citation