• Advanced Photonics Nexus
  • Vol. 2, Issue 3, 036011 (2023)
Yahui Wang1、2、†, Xinxin Hu1, Lintao Niu1, Hui Liu1, Jianzhong Zhang1, and Mingjiang Zhang1、2、3、*
Author Affiliations
  • 1Taiyuan University of Technology, Ministry of Education, Key Laboratory of Advanced Transducers and Intelligent Control System, Taiyuan, China
  • 2Taiyuan University of Technology, College of Physics, Taiyuan, China
  • 3Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
  • show less
    DOI: 10.1117/1.APN.2.3.036011 Cite this Article Set citation alerts
    Yahui Wang, Xinxin Hu, Lintao Niu, Hui Liu, Jianzhong Zhang, Mingjiang Zhang. Long-range chaotic Brillouin optical correlation domain analysis with more than one million resolving points[J]. Advanced Photonics Nexus, 2023, 2(3): 036011 Copy Citation Text show less
    References

    [1] P. Jousset et al. Fibre optic distributed acoustic sensing of volcanic events. Nat. Commun., 13, 1753(2022).

    [2] J. Li, M. J. Zhang. Physics and applications of Raman distributed optical fiber sensing. Light Sci. Appl., 11, 128(2022).

    [3] J. B. Murray, A. Cerjan, B. Redding. Distributed Brillouin fiber laser sensor. Optica, 9, 80-87(2022).

    [4] P. Lu et al. Distributed optical fiber sensing: review and perspective. Appl. Phys. Rev., 6, 041302(2019).

    [5] C. Karapanagiotis et al. Distributed humidity fiber-optic sensor based on BOFDA using a simple machine learning approach. Opt. Express, 30, 12484-12494(2022).

    [6] A. Minardo et al. Proposal of Brillouin optical frequency-domain reflectometry (BOFDR). Opt. Express, 24, 29994-30001(2016).

    [7] X. Y. Bao, Z. C. Zhou, Y. Wang. Review: distributed time-domain sensors based on Brillouin scattering and FWM enhanced SBS for temperature, strain and acoustic wave detection. PhotoniX, 2, 14(2021).

    [8] X. Z. Sun et al. Genetic-optimised aperiodic code for distributed optical fibre sensors. Nat. Commun., 11, 5774(2020).

    [9] J. H. Youn, K. Y. Song. Brillouin optical correlation domain analysis using orthogonally polarized probe sidebands. J. Lightwave Technol., 40, 894-899(2022).

    [10] A. Zadok et al. Random-access distributed fiber sensing. Laser Photonics Rev., 6, L1-L5(2012).

    [11] Y. K. Dong et al. 150 km fast BOTDA based on the optical chirp chain probe wave and Brillouin loss scheme. Opt. Lett., 43, 4679-4682(2018).

    [12] M. A. Soto, J. A. Ramirez, L. Thevenaz. Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration. Nat. Commun., 7, 10870(2016).

    [13] B. Z. Wang et al. High-performance optical chirp chain BOTDA by using a pattern recognition algorithm and the differential pulse-width pair technique. Photonics Res., 7, 652-658(2019).

    [14] D. W. Zhou et al. Millimeter-level recognition capability of BOTDA based on a transient pump pulse and algorithm enhancement. Opt. Lett., 46, 3440-3443(2021).

    [15] Q. Zhang et al. Centimeter-level spatial resolution Brillouin optical time domain analyzer using mono-pulse self-difference. Opt. Lett., 47, 5008-5011(2021).

    [16] M. Matsumoto, S. Akai. High-spatial-resolution Brillouin optical correlation domain analysis using short-pulse optical sources. J. Lightwave Technol., 37, 6007-6014(2019).

    [17] Y. H. Wang, M. J. Zhang. Recent progress in long-range Brillouin optical correlation domain analysis. Sensors, 22, 6062(2022).

    [18] J. H. Jeong et al. Bidirectional measurement for Brillouin optical correlation domain analysis. Opt. Express, 20, 11091-11096(2012).

    [19] J. H. Jeong et al. Differential measurement scheme for Brillouin optical correlation domain analysis. Opt. Express, 20, 27094-27101(2012).

    [20] Y. H. Kim, K. Lee, K. Y. Song. Brillouin optical correlation domain analysis with more than 1 million effective sensing points based on differential measurement. Opt. Express, 23, 33241-33248(2015).

    [21] G. Ryu et al. Brillouin optical correlation domain analysis enhanced by time-domain data processing for concurrent interrogation of multiple sensing points. J. Lightwave Technol., 35, 5311-5316(2017).

    [22] D. Elooz et al. High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis. Opt. Express, 22, 6453-6463(2014).

    [23] Y. London et al. Brillouin optical correlation domain analysis addressing 440 000 resolution points. J. Lightwave Technol., 34, 4421-4429(2016).

    [24] A. Denisov, M. A. Soto, L. Thevenaz. Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration. Light Sci. Appl., 5, e16074(2016).

    [25] G. Ryu et al. 50 km-range Brillouin optical correlation domain analysis with first-order backward distributed Raman amplification. J. Lightwave Technol., 38, 5199-5204(2020).

    [26] Y. Zhou et al. Long-range high-spatial-resolution distributed measurement by a wideband Brillouin amplification-boosted BOCDA. J. Lightwave Technol., 40, 5743-5751(2022).

    [27] Y. Guo et al. Ultrafast and real-time physical random bit extraction with all-optical quantization. Adv. Photonics, 4, 035001(2022).

    [28] J. Z. Zhang et al. Chaotic Brillouin optical correlation domain analysis. Opt. Lett., 43, 1722-1725(2018).

    [29] J. Z. Zhang et al. Time-gated chaotic Brillouin optical correlation domain analysis. Opt. Express, 26, 17597-17607(2018).

    [30] Y. H. Wang et al. Millimeter-level-spatial-resolution Brillouin optical correlation-domain analysis based on broadband chaotic laser. J. Lightwave Technol., 37, 3706-3712(2019).

    [31] L. Zhao et al. Effect of chaotic time delay signature on Brillouin gain spectrum in the slope-assisted chaotic BOCDA. Opt. Express, 28, 18189-18201(2020).

    [32] L. Zhao et al. Improvement of strain measurement accuracy and resolution by dual-slope-assisted chaotic Brillouin optical correlation domain analysis. J. Lightwave Technol., 39, 3312-3318(2021).

    [33] L. Thevenaz, S. F. Mafang, J. Lin. Effect of pulse depletion in a Brillouin optical time-domain analysis system. Opt. Express, 21, 14017-14035(2013).

    [34] M. A. Soto, L. Thévenaz. Modeling and evaluating the performance of Brillouin distributed optical fiber sensors. Opt. Express, 21, 31347-31366(2013).

    [35] H. Iribas et al. Effects of pump pulse extinction ratio in Brillouin optical time-domain analysis sensors. Opt. Express, 25, 27896-27912(2017).

    Yahui Wang, Xinxin Hu, Lintao Niu, Hui Liu, Jianzhong Zhang, Mingjiang Zhang. Long-range chaotic Brillouin optical correlation domain analysis with more than one million resolving points[J]. Advanced Photonics Nexus, 2023, 2(3): 036011
    Download Citation