• Bulletin of the Chinese Ceramic Society
  • Vol. 42, Issue 1, 302 (2023)
YU Na1, LI Qiulian1, HU Xinghuan1, LIU Xin1, ZHAO Yonggang1, CHEN Yufei1, ZHOU Zhineng1, and WANG Shurong1、2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    YU Na, LI Qiulian, HU Xinghuan, LIU Xin, ZHAO Yonggang, CHEN Yufei, ZHOU Zhineng, WANG Shurong. Effects of Different Spin Coating Modes on Properties of Cu2ZnSn(S,Se)4 Thin Film and Corresponding Devices[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(1): 302 Copy Citation Text show less
    References

    [1] BARKHOUSE D A R, GUNAWAN O, GOKMEN T, et al. Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell[J]. Progress in Photovoltaics: Research and Applications, 2012, 20(1): 6-11.

    [3] WINKLER M T, WANG W, GUNAWAN O, et al. Optical designs that improve the efficiency of Cu2ZnSn(Se,S)4 solar cells[J]. Energy & Environmental Science, 2014, 7(3): 1029-1036.

    [4] TODOROV T K, REUTER K B, MITZI D B. High-efficiency solar cell with earth-abundant liquid-processed absorber[J]. Advanced Materials, 2010, 22(20): E156-E159.

    [5] KI W, HILLHOUSE H W. Earth-abundant element photovoltaics directly from soluble precursors with high yield using a non-toxic solvent[J]. Advanced Energy Materials, 2011, 1(5): 732-735.

    [6] WANG W, WINKLER M T, GUNAWAN O, et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency[J]. Advanced Energy Materials, 2014, 4(7): 1301465.

    [8] YANG K J, SON D H, SUNG S J, et al. A band-gap-graded CZTSSe solar cell with 12.3% efficiency[J]. Journal of Materials Chemistry A, 2016, 4(26): 10151-10158.

    [9] HE M R, ZHANG X, HUANG J L, et al. High efficiency Cu2ZnSn(S,Se)4 solar cells with shallow LiZn acceptor defects enabled by solution-based Li post-deposition treatment[J]. Advanced Energy Materials, 2021, 11(13): 2003783.

    [10] QI Y F, LIU Y, KOU D X, et al. Enhancing grain growth for efficient solution-processed (Cu,Ag)2ZnSn(S,Se)4 solar cells based on acetate precursor[J]. ACS Applied Materials & Interfaces, 2020, 12(12): 14213-14223.

    [12] GONG Y C, ZHU Q, LI B Y, et al. Elemental de-mixing-induced epitaxial kesterite/CdS interface enabling 13%-efficiency kesterite solar cells[J]. Nature Energy, 2022, 7(10): 966-977.

    [13] NAKAMURA M, YAMAGUCHI K, KIMOTO Y, et al. Cd-free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%[J]. IEEE Journal of Photovoltaics, 2019, 9(6): 1863-1867.

    [14] RAKITIN V V, VARUSHKIN P E, XIN H, et al. The use of the liquid-phase method from DMSO solutions for the synthesis of CZTS thin film materials[J]. J. Connolly. EPJ Photovoltaics, 2019, 10: 6.

    [15] GONG Y C, ZHANG Y F, JEDLICKA E, et al. Sn4+ precursor enables 12.4% efficient kesterite solar cell from DMSO solution with open circuit voltage deficit below 0.30 V[J]. Science China Materials, 2021, 64(1): 52-60.

    [16] WERNER M, SUTTER-FELLA C M, HAGENDORFER H, et al. Cu2ZnSn(S,Se)4 solar cell absorbers processed from Na-containing solutions in DMSO[J]. Physica Status Solidi (a), 2015, 212(1): 116-120.

    [17] LUAN H M, YAO B, LI Y F, et al. Influencing mechanism of cationic ratios on efficiency of Cu2ZnSn(S,Se)4 solar cells fabricated with DMF-based solution approach[J]. Solar Energy Materials and Solar Cells, 2019, 195: 55-62.

    [18] LIU F, SHEN S, ZHOU F, et al. Kesterite Cu2ZnSnS4 thin film solar cells by a facile DMF-based solution coating process[J]. Journal of Materials Chemistry C, 2015, 3(41): 10783-10792.

    [19] COLLORD A D, HILLHOUSE H W. Germanium alloyed kesterite solar cells with low voltage deficits[J]. Chemistry of Materials, 2016, 28(7): 2067-2073.

    [20] SU Z H, LIANG G X, FAN P, et al. Device postannealing enabling over 12% efficient solution-processed Cu2ZnSnS4 solar cells with Cd2+ substitution[J]. Advanced Materials, 2020, 32(32): 2000121.

    [21] WU S H, WANG Y Y, HUANG K T, et al. Sulfur-rich sulfurization and solution stability of Cu2ZnSnS4 solar cells fabricated by 2-methoxyethanol-based process[J]. Journal of Alloys and Compounds, 2017, 703: 309-314.

    [22] TUAN D A, KE N H, THI KIEU LOAN P, et al. A method to improve the crystal quality of CZTSSe absorber layer[J]. Journal of Sol-Gel Science and Technology, 2018, 87(1):245-253.

    [23] STANCHIK A V, GREMENOK V F, JUSKENAS R, et al. Effects of selenization time and temperature on the growth of Cu2ZnSnSe4 thin films on a metal substrate for flexible solar cells[J]. Solar Energy, 2019, 178: 142-149.

    [24] PRABHU Y T, RAO K V, KUMAR V S S, et al. X-ray analysis by Williamson-Hall and size-strain plot methods of ZnO nanoparticles with fuel variation[J]. World Journal of Nano Science and Engineering, 2014, 4: 21-28.

    [25] WEBER A, MAINZ R, SCHOCK H W. On the Sn loss from thin films of the material system Cu-Zn-Sn-S in high vacuum[J]. Journal of Applied Physics, 2010, 107(1): 013516.

    [26] LEE Y S, GERSHON T, GUNAWAN O, et al. Cu2ZnSnSe4 thin-film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority carrier diffusion length[J]. Advanced Energy Materials, 2015, 5(7): 1401372.

    YU Na, LI Qiulian, HU Xinghuan, LIU Xin, ZHAO Yonggang, CHEN Yufei, ZHOU Zhineng, WANG Shurong. Effects of Different Spin Coating Modes on Properties of Cu2ZnSn(S,Se)4 Thin Film and Corresponding Devices[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(1): 302
    Download Citation