[1] 黄泽贤, 吴凡路, 傅瑶. 基于深度学习的遥感图像舰船目标检测算法综述. 光学 精密工程, 31, 2295-2318(2023).
Z X HUANG, F L WU, Y FU et al. Review of deep learning-based algorithms for ship target detection from remote sensing images. Opt. Precision Eng., 31, 2295-2318(2023).
[2] 刘忻伟, 朴永杰, 郑亮亮. 面向航天光学遥感复杂场景图像的舰船检测. 光学 精密工程, 31, 892-904(2023).
X W LIU, Y J PIAO, L L ZHENG et al. Ship detection for complex scene images of space optical remote sensing. Opt. Precision Eng., 31, 892-904(2023).
[3] Z WANG, P LI, Y C CUI et al. Automatic detection of individual trees in forests based on airborne LiDAR data with a tree region-based convolutional neural network (RCNN). Remote Sensing, 15, 1024(2023).
[4] W LIU, D ANGUELOV, D ERHAN et al. SSD: single shot multibox detector, 21-37(2016).
[5] 林珊玲, 彭雪玲, 王栋. 多尺度增强特征融合的钢表面缺陷目标检测. 光学 精密工程, 32, 1075-1086(2024).
S L LIN, X L PENG, D WANG et al. Object detection of steel surface defect based on multi-scale enhanced feature fusion. Opt. Precision Eng., 32, 1075-1086(2024).
[6] Q F WU, D Q FENG, C Q CAO et al. Improved mask R-CNN for aircraft detection in remote sensing images. Sensors, 21, 2618(2021).
[7] B WANG, Y ZHOU, H N ZHANG et al. An aircraft target detection method based on regional convolutional neural network for remote sensing images, 474-478(2019).
[8] L B ZHANG, C Y LI, L J ZHAO et al. A cascaded three-look network for aircraft detection in SAR images. Remote Sensing Letters, 11, 57-65(2020).
[9] Y K YANG, G R XIE, Y QU. Real-time detection of aircraft objects in remote sensing images based on improved YOLOv4, 1156-1164(2021).
[10] D Y ZHANG, Z H ZHAO, S H HUANG. Investigation of aircraft target detection of remote sensing images based on the improved YOLOv5, 266-270(2023).
[11] T J ZHAO, N QIAO. Research on target detection technology of aircraft satellite images based on improved YOLOv5 model, 89-94(2023).
[12] G JOCHER, A CHAURASIA, J QIU. ULTRALYTICS YOLOv8. https://github.com/ultralytics/ultralytics
[13] G JOCHER. ULTRALYTICS. https://github.com/ultralytics/yolov5
[14] Q L WANG, B G WU, P F ZHU et al. ECA-net: efficient channel attention for deep convolutional neural networks, 11531-11539(2020).
[15] X Z ZHU, D Z CHENG, Z ZHANG et al. An empirical study of spatial attention mechanisms in deep networks, 6687-6696(2019).
[16] C Y WANG, A BOCHKOVSKIY, H Y M LIAO. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors, 7464-7475(2023).
[17] Z H ZHENG, P WANG, W LIU et al. Distance-IoU loss: faster and better learning for bounding box regression. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 12993-13000(2020).
[18] C LIU, K G WANG, Q LI et al. Powerful-IoU: more straightforward and faster bounding box regression loss with a nonmonotonic focusing mechanism. Neural Networks, 170, 276-284(2024).
[19] W Q YU, G CHENG, M J WANG et al. MAR20: a benchmark for military aircraft recognition in remote sensing images. National Remote Sensing Bulletin, 27, 2688-2696(2023).
禹文奇, 程塨, 王美君. MAR20: 遥感图像军用飞机目标识别数据集. 遥感学报, 27, 2688-2696(2023).
[20] G CHENG, P C ZHOU, J W HAN. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 54, 7405-7415(2016).
[21] K M HE, X Y ZHANG, S Q REN et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 1904-1916(2015).
[22] L C CHEN, G PAPANDREOU, I KOKKINOS et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 834-848(2018).
[23] S LIU, D HUANG, Y WANG. Receptive field block net for accurate and fast object detection, 8, 404-419(2018).
[25] J PARK, J Y LEE et al. CBAM: Convolutional block attention module, 8, 3-19(2018).
[26] Q B HOU, D Q ZHOU, J S FENG. Coordinate attention for efficient mobile network design, 13708-13717(2021).
[28] R AZAD, L NIGGEMEIER, M HÜTTEMANN et al. Beyond self-attention: deformable large kernel attention for medical image segmentation, 1276-1286(2024).
[29] D L OUYANG, S HE, G Z ZHANG et al. Efficient multi-scale attention module with cross-spatial learning, 1-5(2023).
[30] K W LAU, L M PO, Y A U REHMAN. Large separable kernel attention: rethinking the large kernel attention design in CNN. Expert Systems with Applications, 236, 121352(2024).
[31] Q L ZHANG, Y B YANG. SA-net: Shuffle attention for deep convolutional neural networks, 2235-2239(2021).
[32] L YANG, R Y ZHANG, L LI et al. SimAM: a simple, parameter-free attention module for convolutional neural networks, 11863-11874(24).
[33] D MISRA, T NALAMADA, A U ARASANIPALAI et al. Rotate to attend: convolutional triplet attention module, 3138-3147(2021).
[34] S Q REN, K M HE, R GIRSHICK et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).