[1] GRAHAM T R, NIENHUIS E T, REYNOLDS J G, et al. Sodium site occupancy and phosphate speciation in natrophosphate are invariant to changes in NaF and Na3PO4 concentration[J]. Inorganic Chemistry Frontiers, 2022, 9(19): 4864-4875.
[2] ZHANG L X, LIU Y M, HAN J, et al. Al doped into Si/P sites of Na3Zr2Si2PO12 with conducted Na3PO4 impurities for enhanced ionic conductivity[J]. ACS Applied Materials & Interfaces, 2023, 15(38): 44867-44875.
[4] PRASAD M, HAZRA B, SARDAR A, et al. Molecular-level insights into a tripolyphosphate and pyrophosphate templated membrane assembly[J]. Soft Matter, 2023, 19(21): 3884-3894.
[5] ZHANG Y, LIU X, LIU Q Y, et al. CaZn(HPO3)2 and Ba2Zn(HPO3)3: novel alkaline-earth zincophosphites with diversified anionic frameworks[J]. Dalton Transactions, 2023, 52(31): 10918-10926.
[6] LIU G X, TANG R L, MA L, et al. Pb2Cl2(HPO3)(H2O) and Pb3Br2(HPO3)2: two phosphite halides with 3D structural networks and enlarged birefringence[J]. Inorganic Chemistry, 2023, 62(3): 1069-1074.
[8] DE A A SOLER-ILLIA G J, SANCHEZ C, LEBEAU B, et al. Chemical strategies of design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchichal structures[J]. ChemInform, 2003, 34(3): 200303279.
[9] PATOUX S, WURM C, MORCRETTE M, et al. A comparative structural and electrochemical study of monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3[J]. Journal of Power Sources, 2003, 119: 278-284.
[10] HUANG H, YIN S C, NAZAR L F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates[J]. Electrochemical and Solid-State Letters, 2001, 4(10): A170.
[11] JIA M H, CHENG X Y, WHANGBO M H, et al. Second harmonic generation responses of KH2PO4: importance of K and breaking down of kleinman symmetry[J]. RSC Advances, 2020, 10(44): 26479-26485.
[12] ZHANG L S, XU M X, LIU B A, et al. New annealing method to improve KD2PO4 crystal quality: learning from high temperature phase transition[J]. CrystEngComm, 2015, 17(25): 4705-4711.
[13] ANIS M, HUSSAINI S S, SHKIR M, et al. Uncovering the influence of Ni2+ on optical and dielectric properties of NH4H2PO4 (ADP) crystal[J]. Optik, 2018, 157: 592-596.
[14] LIU S, SHAO L Y, ZHANG X J, et al. KTiOPO4 as a novel anode material for sodium-ion batteries[J]. Journal of Alloys and Compounds, 2018, 754: 147-152.
[15] LI Z Q, CHEN Y, ZHU P F, et al. Electronic structure and properties of RbTiOPO4∶ Ta crystals[J]. RSC Advances, 2017, 7(84): 53111-53116.
[16] CHEN J, XIONG L, CHEN L, et al. Ba2NaClP2O7: unprecedented phase matchability induced by symmetry breaking and its unique fresnoite-type structure[J]. Journal of the American Chemical Society, 2018, 140(43): 14082-14086.
[17] ZHAO S G, YANG X Y, YANG Y, et al. Non-centrosymmetric RbNaMgP2O7 with unprecedented thermo-induced enhancement of second harmonic generation[J]. Journal of the American Chemical Society, 2018, 140(5): 1592-1595.
[18] YANG X Y, ZHAO S G, GENG S P, et al. Structural origin of thermally induced second harmonic generation enhancement in RbNaMgP2O7[J]. Chemistry of Materials, 2019, 31(23): 9843-9849.
[19] YU H W, YOUNG J, WU H P, et al. M4Mg4(P2O7)3 (M = K, Rb): structural engineering of pyrophosphates for nonlinear optical applications[J]. Chemistry of Materials, 2017, 29(4): 1845-1855.
[20] ZHAO S G, GONG P F, LUO S Y, et al. Tailored synthesis of a nonlinear optical phosphate with a short absorption edge[J]. Angewandte Chemie (International Ed), 2015, 54(14): 4217-4221.
[21] GUO Z W, JIANG H M, LI H, et al. Manipulating alkali charge compensation to improve red fluorescence and thermostability in Ba5P6O20∶ Eu3+ phosphor[J]. Applied Materials Today, 2024, 37: 102095.
[22] ZHAO S G, GONG P F, LUO S Y, et al. Deep-ultraviolet transparent phosphates RbBa2(PO3)5 and Rb2Ba3(P2O7)2 show nonlinear optical activity from condensation of[PO4]3- units[J]. Journal of the American Chemical Society, 2014, 136(24): 8560-8563.
[23] HU Y H, XU X, WANG R X, et al. [Sn3OF]PO4vs. [Sn3F3]PO4: enhancing birefringence by breaking the R3 symmetry and realigning lone pairs[J]. Inorganic Chemistry Frontiers, 2024, 11(17): 5648-5656.
[24] LI X B, HU C L, KONG F, et al. Ba3Sb2(PO4)4 and Cd3Sb2(PO4)4(H2O)2: two new antimonous phosphates with distinct[Sb(PO4)2] structure types and enhanced birefringence[J]. Inorganic Chemistry, 2021, 60(3): 1957-1964.
[25] HUANG J S, GAO R, LU Z G, et al. Sol-gel preparation and photoluminescence enhancement of Li+ and Eu3+ co-doped YPO4 nanophosphors[J]. Optical Materials, 2010, 32(9): 857-861.
[26] STRADA M, SCHWENDIMANN G. La struttura cristallina di alcuni fosfati ed arseniati di metalli trivalenti. II. arseniato e fosfato di ittrio locality: synthetic[J]. Gazzetta Chimica Italiana, 1934, 64: 662-674.
[27] ZACHARIASEN W H. The crystal structure of the normal orthophosphates of barium and strontium[J]. Acta Crystallographica, 1948, 1(5): 263-265.
[28] KEPPLER U. Die struktur der tieftemperaturform des bleiphosphates, Pb3(PO4)2[J]. Zeitschrift Fr Kristallographie - Crystalline Materials, 1970, 132(1/2/3/4/5/6): 228-235.
[29] TLE I, KLIS P, KRONGHAUZ V. Recombination luminescence mechanisms in Ba3(PO4)2[J]. Journal of Luminescence, 1979, 20(4): 343-347.
[31] BENOIT J P, CHAPELLE J P. Raman spectrum of and -Pb3(PO4)2[J]. Solid State Communications, 1974, 15(3): 531-533.
[32] MOONEY-SLATER R C L. Polymorphic forms of bismuth phosphate[J]. Zeitschrift Fur Kristallographie, 1962, 117(5/6): 371-385.
[33] NACIRI Y, AHDOUR A, BENHSINA E, et al. Ba3(PO4)2 photocatalyst for efficient photocatalytic application[J]. Global Challenges, 2024, 8(1): 2300257.
[34] RISTI Z, PIOTROWSKI W, MEDI M N, et al. Near-infrared luminescent lifetime-based thermometry with Mn5+-activated Sr3(PO4)2 and Ba3(PO4)2 phosphors[J]. ACS Applied Electronic Materials, 2022, 4(3): 1057-1062.
[35] BABU BALLIPALLI C, RAJAVARAM R, NARESH V, et al. Synthesis and photoluminescent characteristics of Sm3+-doped Ba3(PO4)2 phosphor hierarchical architectures[J]. Materials Science and Engineering: B, 2021, 264: 114979.
[36] LAZORYAK B I, DIKHTYAR Y Y, SPASSKY D A, et al. Synthesis and photoluminescence properties of Ba3(PO4)2∶Eu3+/2+ phosphors[J]. Materials Research Bulletin, 2024, 176: 112799.
[37] LI S Z, BISMAYER U, DING X D, et al. Ferroelastic shear bands in Pb3(PO4)2[J]. Applied Physics Letters, 2016, 108(2): 022901.
[38] BISMAYER U, MIHAILOVA B, ANGEL R. Ferroelasticity in palmierite-type(1-x)Pb3(PO4)2-xPb3(AsO4)2[J]. Journal of Physics: Condensed Matter, 2017, 29(21): 213001.
[39] RAZA F, NAWAZ F, MUJAHID A, et al. Switching of enhancement and suppression in dressed Eu3+∶YPO4 and Pr3+∶YPO4[J]. Physica Scripta, 2020, 95(7): 075107.
[40] SUN L J, XU Q T, LU J Y, et al. Preparation and spectroscopic characteristics of Tm∶YPO4 crystal[J]. Journal of Luminescence, 2023, 257: 119763.
[41] LI P, YUAN T L, LI F, et al. Phosphate ion-driven BiPO4∶Eu phase transition[J]. The Journal of Physical Chemistry C, 2019, 123(7): 4424-4432.
[42] HAQ M R, EHSAN N, NISHAT S S, et al. Comprehensive first-principles modeling of experimentally synthesized BiPO4 polymorphs[J]. The Journal of Physical Chemistry C, 2024, 128(11): 4779-4788.
[44] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2744.
[45] PERDEW J P, ZUNGER A. Self-interaction correction to density-functional approximations for many-electron systems[J]. Physical Review B, 1981, 23(10): 5048.
[46] PFROMMER B G, CT M, LOUIE S G, et al. Relaxation of crystals with the quasi-newton method[J]. Journal of Computational Physics, 1997, 131(1): 233-240.
[47] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, 1990, 41(11): 7892-7895.
[48] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192.
[49] HISCOCKS J, FRISCH M J. Gaussian 09: IOps Reference[M]. Wallingford, CT, USA: Gaussian, 2009.
[50] JI H P, HUANG Z H, XIA Z G, et al. Discovery of new solid solution phosphors via cation substitution-dependent phase transition in M3(PO4)2∶ Eu2+ (M = Ca/Sr/Ba) quasi-binary sets[J]. The Journal of Physical Chemistry C, 2015, 119(4): 2038-2045.
[51] ANGEL R J, BISMAYER U, MARSHALL W G. Renormalization of the phase transition in lead phosphate, Pb3(PO4)2, by high pressure: structure[J]. Journal of Physics: Condensed Matter, 2001, 13(22): 5353-5364.
[52] ACHARY S N, ERRANDONEA D, MUOZ A, et al. Experimental and theoretical investigations on the polymorphism and metastability of BiPO4[J]. Dalton Transactions, England, 2013, 42(42): 14999-15015.
[53] NI Y X, HUGHES J M, MARIANO A N. Crystal chemistry of the monazite and xenotime structures[J]. American Mineralogist, 1995, 80(1/2): 21-26.
[54] HU L, MA X G, WEI Y, et al. Origin of photocatalytic activity of BiPO4: the first-principles calculations[J]. Chinese Journal of Structural Chemistry, 2017, 36(8): 1299-1306 (in Chinese).
[55] LEVUSHKINA V S, SPASSKY D A, ALEKSANYAN E M, et al. Bandgap engineering of the LuxY1-xPO4 mixed crystals[J]. Journal of Luminescence, 2016, 171: 33-39.
[57] KUMAR P, KUMAR A, DHAWAN T, et al. First principle calculation of structural, electronic, optical, elastic and thermodynamic properties of group IIA metal iodides: structure-property correlation[J]. Journal of Physics and Chemistry of Solids, 2023, 175: 111195.