[1] YU Q, HE C X. Application of nondestructive testing in composite material [J]. Engineering and Test, 2009, 49(2): 24-29.
[2] HOU R F, WANG W H, MO R Y, et al. Laser ultrasound detection of surface crack in porcelain insulators [J]. Laser Technology, 2014, 38(1): 35-38.
[3] MA J, ZHAO Y, ZHOU F Y, et al. Effect of defocusing amount on thickness measurement based on laser ultrasound [J]. Laser Technology, 2015, 39(2): 349-352.
[4] CHEN K, FU X, DORANTES-GONZALEZ D J, et al. Laser-generated surface acoustic wave technique for crack monitoring-a review [J]. International Journal of Automation Technology, 2013, 7(2): 211-220.
[5] DU D, CAI G R, TIAN Y, et al. Automatic inspection of weld defects with X-ray real time imaging [J]. Lecture Notes in Control and Information Sciences, 2007, 359-366.
[6] STEVEN M S, JAMES R L, TADIQ A, et al. Thermo graphic inspection of Composite Structures [J]. SAMPLE Journal, 2003, 39(5): 53-58.
[7] YANG Yu e, YAN Tian ting, REN Bao sheng. Microwave evaluation of direction and bending defect of carbon fiber in composite material [J]. Journal of Aeronautical Materials, 2015, 35(6): 91-96.
[8] SCHMIDT K, LITTLE J, ELLINGSON W A.A portable microwave scanning technique for nondestructive testing of multilayered dielectric materials [C]. State of California: Ceramic Engineering and Science Proceedings, 2009, 29(6): 179-189.
[9] LOUTAS T H, KOSTOPOULOS V. Health monitoring of carbon, wove reinforced composites. Damage assessment by using advanced signal processing techniques. Part I: acoustic emission monitoring and damage mechanisms evolution [J]. Composites Science and Technology, 2009, 69(2): 265-272.
[10] THOMAS S, BONGIOVANN C, NUTT S R. In situ estimation of through-thickness resin flow using ultrasound [J]. Composites Science and Technology, 2008, 38(15): 3093-3098.
[11] LIU Hualong. Actualities and perspectives of techniques of detection and localization of partial discharges in power transformers adopting ultrasonic methods [J]. Journal of Chongqing University of Technology : Natural Science, 2014(7): 71-79.
[12] LI C H, LI S N, et al. A comparison of laser ultrasonic measurements and finite element simulations for evaluating the elastic properties of tissue mimicking phantoms [J]. Optics & Laser Technology, 2012, 44(4): 866-871.
[13] MA Baoqan, ZHOU Zhenggan. Progress and development trends of composite structure evaluation using noncontact nondestructive testing techniques in aviation and aerospace industries [J]. Acta Aeronautica Et Astronautica Sinica, 2014, 35(7): 1787-1803.
[14] LEE J R, CHONG S Y, JEONG H, et al. A time-of-flight mapping method for laser ultrasound guided in a pipe and its application to wall thinning visualization [J]. Ndt & E International, 2011, 44(8): 680-691.
[15] KRISHNASWAMY S. Theory and applications of laser-ultrasonic techniques [M].USA: Ultrasonic Nondestructive Evaluation, 2003, 437-438.
[16] HU Wenxiang, SUN Wei, QIAN Menglu, et al. Acoustic field of cylindrical surface waves generated thermo elastically by a pulsed laser line source [J]. Journal of Tongji University: Natural Science, 2005, 33(3): 400-403
[17] WANG Jinshi, XUN Xiaodong, LIU Xiaojun, et al. Study on low-pass filtering effect of surface microcrack defect materials by laser ultrasonic technology [J]. Journal of Physics, 2008, 57(12): 7765-7769.
[18] CHENG Xi, XU Xiaodong, LIU Xiaojun, et al. Studying the propagating properties of surface wave traveling in functional gradient materials by laser ultrasonic [J]. Acta Acustica, 2011, 36(2): 145-149
[19] LUO Yukun, Study on finite element analysis and signal testing methods of laser-generated ultrasonic [D].Changsha: National University of Defense Technology, 2012: 9-20.