• Photonics Research
  • Vol. 13, Issue 2, 433 (2025)
Qiang Zhang1, Qikai Huang2, Penghui Xia2, Yan Li3..., Xingyi Jiang2, Shuyue Zhang2, Shengyu Fang2, Jianyi Yang2 and Hui Yu1,*|Show fewer author(s)
Author Affiliations
  • 1Zhejiang Lab, Hangzhou 311100, China
  • 2Institute of Integrated Microelectronic Systems, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
  • 3Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
  • show less
    DOI: 10.1364/PRJ.538014 Cite this Article Set citation alerts
    Qiang Zhang, Qikai Huang, Penghui Xia, Yan Li, Xingyi Jiang, Shuyue Zhang, Shengyu Fang, Jianyi Yang, Hui Yu, "All-optically linearized silicon modulator with ultrahigh SFDR of 131 dB · Hz6/7," Photonics Res. 13, 433 (2025) Copy Citation Text show less
    References

    [1] D. Marpaung, C. Roeloffzen, R. Heideman. Integrated microwave photonics. Laser Photonics Rev., 7, 506-538(2013).

    [2] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonics. Nat. Photonics, 13, 80-90(2019).

    [3] S. Sun, B. Wang, K. Liu. Integrated optical frequency division for microwave and mm wave generation. Nature, 627, 540-545(2024).

    [4] E. Lucas, P. Brochard, R. Bouchand. Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator. Nat. Commun., 11, 374(2020).

    [5] J. Liu, E. Lucas, A. S. Raja. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photonics, 14, 486-491(2020).

    [6] O. Daulay, G. Liu, K. Ye. Ultrahigh dynamic range and low noise figure programmable integrated microwave photonic filter. Nat. Commun., 13, 7798(2022).

    [7] J. Li, S. Yang, H. Chen. Fully integrated hybrid microwave photonic receiver. Photonics Res., 10, 1472-1483(2022).

    [8] J. S. Fandiño, P. Muñoz, D. Doménech. A monolithic integrated photonic microwave filter. Nat. Photonics, 11, 124-129(2017).

    [9] H. Wen, H. Zheng, Q. Mo. Few-mode fibre-optic microwave photonic links. Light Sci. Appl., 6, e17021(2017).

    [10] X. Zhang, Z. Feng, D. Marpaung. Low-loss microwave photonics links using hollow core fibres. Light Sci. Appl., 11, 213(2022).

    [11] X. Zou, B. Lu, W. Pan. Photonics for microwave measurements. Laser Photonics Rev., 10, 711-734(2016).

    [12] Y. Tao, F. Yang, Z. Tao. Fully on-chip microwave photonic instantaneous frequency measurement system. Laser Photonics Rev., 16, 2200158(2022).

    [13] H. Jiang, D. Marpaung, M. Pagani. Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter. Optica, 3, 30-34(2016).

    [14] L. R. Cortés, D. Onori, H. G. de Chatellus. Towards on-chip photonic-assisted radio-frequency spectral measurement and monitoring. Optica, 7, 434-447(2020).

    [15] B. Zhang, X. Wang, S. Pan. Photonics-based instantaneous multi-parameter measurement of a linear frequency modulation microwave signal. J. Lightwave Technol., 36, 2589-2596(2018).

    [16] Y. Liu, A. R. Wichman, B. Isaac. Ultra-low-loss silicon nitride optical beamforming network for wideband wireless applications. IEEE J. Sel. Top. Quantum Electron., 24, 8300410(2018).

    [17] X. Guo, Y. Liu, T. Yin. Versatile silicon microwave photonic spectral shaper. APL Photonics, 6, 036106(2021).

    [18] C. Zhang, P. Morton, J. Khurgin. Ultralinear heterogeneously integrated ring-assisted Mach-Zehnder interferometer modulator on silicon. Optica, 3, 1483-1488(2016).

    [19] H. Feng, K. Zhang, W. Sun. Ultra-high-linearity integrated lithium niobate electro-optic modulators. Photonics Res., 10, 2366-2373(2022).

    [20] H. Feng, T. Ge, X. Guo. Integrated lithium niobate microwave photonic processing engine. Nature, 627, 80-87(2024).

    [21] W. Zhang, J. Yao. Silicon-based integrated microwave photonics. IEEE J. Quantum Electron., 52, 0600412(2015).

    [22] L. R. Chen. Silicon photonics for microwave photonics applications. J. Lightwave Technol., 35, 824-835(2017).

    [23] H. Shu, L. Chang, Y. Tao. Microcomb-driven silicon photonic systems. Nature, 605, 457-463(2022).

    [24] L. Xu, J. Hou, H. Tang. Silicon-on-insulator-based microwave photonic filter with widely adjustable bandwidth. Photonics Res., 7, 110-115(2019).

    [25] C. Rogers, A. Y. Piggott, D. J. Thomson. A universal 3D imaging sensor on a silicon photonics platform. Nature, 590, 256-261(2021).

    [26] V. C. Duarte, J. G. Prata, C. F. Ribeiro. Modular coherent photonic-aided payload receiver for communications satellites. Nat. Commun., 10, 1984(2019).

    [27] C. Zhu, L. Lu, W. Shan. Silicon integrated microwave photonic beamformer. Optica, 7, 1162-1170(2020).

    [28] Q. Zhang, J. Ji, Q. Cheng. Two-dimensional phased-array receiver based on integrated silicon true time delay lines. IEEE Trans. Microwave Theory Tech., 71, 1251-1261(2023).

    [29] S. Liu, K. Wu, L. Zhou. Microwave pulse generation with a silicon dual-parallel modulator. J. Lightwave Technol., 38, 2134-2143(2020).

    [30] B. Bai, Q. Yang, H. Shu. Microcomb-based integrated photonic processing unit. Nat. Commun., 14, 66(2023).

    [31] A. M. Gutierrez, A. Brimont, J. Herrera. Analytical model for calculating the nonlinear distortion in silicon-based electro-optic Mach–Zehnder modulators. J. Lightwave Technol., 31, 3603-3613(2013).

    [32] C. Bottenfield, V. Thomas, S. Ralph. Silicon photonic modulator linearity and optimization for microwave photonic links. IEEE J. Sel. Top. Quantum Electron., 25(2019).

    [33] Q. Zhang, H. Yu, H. Jin. Linearity comparison of silicon carrier-depletion-based single, dual-parallel, and dual-series Mach–Zehnder modulators. J. Lightwave Technol., 36, 3318-3331(2018).

    [34] Q. Zhang, H. Yu, L. Wang. Silicon dual-series Mach–Zehnder modulator with high linearity. Opt. Lett., 44, 5655-5658(2019).

    [35] Q. Zhang, H. Yu, P. Xia. High linearity silicon modulator capable of actively compensating input distortion. Opt. Lett., 45, 3785-3788(2020).

    [36] H. Yue, K. Chen, T. Chu. Ultrahigh-linearity dual-drive scheme using a single silicon modulator. Opt. Lett., 48, 2995-2998(2023).

    [37] M. Li, L. Wang, X. Li. Silicon intensity Mach-Zehnder modulator for single lane 100  Gb/s applications. Photonics Res., 6, 109-116(2018).

    [38] P. Xia, H. Yu, M. Yang. High sideband suppression silicon single sideband modulator integrated with a radio frequency branch line coupler. Photonics Res., 11, 329-336(2023).

    [39] D. Patel, S. Ghosh, M. Chagnon. Design, analysis, and transmission system performance of a 41  GHz silicon photonic modulator. Opt. Express, 23, 14263-14287(2015).

    [40] J. Ding, S. Shao, L. Zhang. Method to improve the linearity of the silicon Mach-Zehnder optical modulator by doping control. Opt. Express, 24, 24641-24648(2016).

    [41] M. He, M. Xu, Y. Ren. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100  Gbit s−1 and beyond. Nat. Photonics, 13, 359-364(2019).

    [42] J. Wang, Q. Tan, W. Qin. A linearization analog photonic link with high third-order intermodulation distortion suppression based on dual-parallel Mach–Zehnder modulator. IEEE Photonics J., 7, 7902208(2015).

    [43] S. Chen, G. Zhou, L. Zhou. High-linearity Fano resonance modulator using a microring-assisted Mach–Zehnder structure. J. Lightwave Technol., 38, 3395-3403(2020).

    [44] N. Hosseinzadeh, A. Jain, R. Helkey. A distributed low-noise amplifier for broadband linearization of a silicon photonic Mach–Zehnder modulator. IEEE J. Solid-State Circuits, 56, 1897-1909(2021).

    [45] D. Novak, R. Waterhouse. Microwave photonic systems for RF sensing applications. Optical Fiber Communications Conference and Exposition (OFC), 1-50(2018).

    [46] F. Valdez, V. Mere, S. Mookherjea. 100  GHz bandwidth, 1 volt integrated electro-optic Mach–Zehnder modulator at near-IR wavelengths. Optica, 10, 578-584(2023).

    [47] F. Arab Juneghani, M. Gholipour Vazimali, J. Zhao. Thin-film lithium niobate optical modulators with an extrapolated bandwidth of 170  GHz. Adv. Photonics Res., 4, 2200216(2023).

    [48] M. Burla, C. Hoessbacher, W. Heni. 500  GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics. APL Photonics, 4, 056106(2021).

    Qiang Zhang, Qikai Huang, Penghui Xia, Yan Li, Xingyi Jiang, Shuyue Zhang, Shengyu Fang, Jianyi Yang, Hui Yu, "All-optically linearized silicon modulator with ultrahigh SFDR of 131 dB · Hz6/7," Photonics Res. 13, 433 (2025)
    Download Citation