• Resources Science
  • Vol. 42, Issue 8, 1592 (2020)
Xuesong DONG1、2, Jianbai HUANG1、2、*, Meirui ZHONG1、2, Jinyu CHEN1、2, Gang LIU3, and Yi SONG4
Author Affiliations
  • 1School of Business, Central South University, Changsha 410083, China
  • 2Institute of Metal Resources Strategy, Central South University, Changsha 410083, China
  • 3SDU Life Cycle Engineering, Department of Chemical Engineering, Biotechnology, and Environmental Engineering, University of Southern Denmark (SDU), 5230 Odense, Denmark
  • 4School of Economics and Management, China University of Geosciences (Wuhan), Wuhan 430074, China
  • show less
    DOI: 10.18402/resci.2020.08.13 Cite this Article
    Xuesong DONG, Jianbai HUANG, Meirui ZHONG, Jinyu CHEN, Gang LIU, Yi SONG. A review on the impact of technological progress on critical metal mineral demand[J]. Resources Science, 2020, 42(8): 1592 Copy Citation Text show less
    References

    [1] 汪灵. 战略性非金属矿产的思考[J]. 矿产保护与利用, 2019,39(6):1-7. [WangL. Considerations on strategic non-metallic mineral resources[J]. Conservation and Utilization of Mineral Resources, 2019,39(6):1-7.] [Wang L. Considerations on strategic non-metallic mineral resources[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 1-7.]

    [2] 唐金荣, 杨宗喜, 周平, 等. 国外关键矿产战略研究进展及其启示[J]. 地质通报, 2014,33(9):1445-1453. [Tang JR, Yang ZX, ZhouP, et al. The progress in the strategic study of critical minerals and its implications[J]. Geological Bulletin of China, 2014,33(9):1445-1453.] [Tang J R, Yang Z X, Zhou P, et al. The progress in the strategic study of critical minerals and its implications[J]. Geological Bulletin of China, 2014, 33(9): 1445-1453.]

    [3] 王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019,93(6):1189-1209. [Wang DH. Study on critical mineral resources: Significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation[J]. Acta Geologica Sinica, 2019,93(6):1189-1209.] [Wang D H. Study on critical mineral resources: Significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation[J]. Acta Geologica Sinica, 2019, 93(6): 1189-1209.]

    [4] 张所续, 刘伯恩, 马朋林. 美国关键矿产战略调整对我国的相关启示[J]. 中国国土资源经济, 2019,32(7):38-45. [Zhang SX, Liu BE, Ma PL. The enlightenment of the strategic adjustment of key minerals in the United States to Our country[J]. Natural Resource Economics of China, 2019, (7):38-45.] [Zhang S X, Liu B E, Ma P L. The enlightenment of the strategic adjustment of key minerals in the United States to Our country[J]. Natural Resource Economics of China, 2019, (7): 38-45.]

    [5] Gulley AL, Nassar NT, XunS. China, the United States, and competition for resources that enable emerging technologies[J]. Proceedings of the National Academy of Sciences, 115, 4111-4115(2018).

    [6] 郭佳, 易继宁, 王慧. 全球主要战略性矿产名录评价因素对比研究[J]. 现代矿业, 2018,34(12):1-5. [GuoJ, Yi JN, WangH. Comparative study on evaluation factors of global major strategic mineral resources lists[J]. Modern Mining, 2018,34(12):1-5.] [Guo J, Yi J N, Wang H. Comparative study on evaluation factors of global major strategic mineral resources lists[J]. Modern Mining, 2018, 34(12): 1-5.]

    [7] 毛景文, 杨宗喜, 谢桂青, 等. 关键矿产: 国际动向与思考[J]. 矿床地质, 2019,38(4):689-698. [Mao JW, Yang ZX, Xie GQ, et al. Critical minerals: International trend and thinking[J]. Mineral Deposits, 2019,38(4):689-698.] [Mao J W, Yang Z X, Xie G Q, et al. Critical minerals: International trend and thinking[J]. Mineral Deposits, 2019, 38(4): 689-698.]

    [8] 王安建, 王高尚, 邓祥征, 等. 新时代中国战略性关键矿产资源安全与管理[J]. 中国科学基金, 2019,33(2):31-38. [Wang AJ, Wang GS, Deng XZ, et al. Security and management of China’s critical mineral resources in the new era[J]. Bulletin of National Natural Science Foundation of China, 2019,33(2):31-38.] [Wang A J, Wang G S, Deng X Z, et al. Security and management of China’s critical mineral resources in the new era[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(2): 31-38.]

    [9] 翟明国, 吴福元, 胡瑞忠, 等. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 2019,33(2):106-111. [Zhai MG, Wu FY, Hu RZ, et al. Critical metal mineral resources: Current research status and scientific issues[J]. Bulletin of National Natural Science Foundation of China, 2019,33(2):106-111.] [Zhai M G, Wu F Y, Hu R Z, et al. Critical metal mineral resources: Current research status and scientific issues[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(2): 106-111.]

    [10] Nassar NT, Graedel TE, Harper EM. By-product metals are technologically essential but have problematic supply[J]. Science Advances(2015). https://www.ncbi.nlm.nih.gov/pubmed/33028519

    [11] GrandellL, LehtilA, KivinenM et al. Role of critical metals in the future markets of clean energy technologies[J]. Renewable Energy, 95, 53-62(2016).

    [12] VidalO, RostomF, Fran?oisC et al. Global trends in metal consumption and supply: The raw material-energy nexus[J]. Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology, 13, 319-324(2017).

    [13] Choi CH, EunJ, Cao JJ et al. Global strategic level supply planning of materials critical to clean energy technologies: A case study on indium[J]. Energy, 147, 950-964(2018).

    [14] 李鹏飞, 杨丹辉, 渠慎宁, 等. 稀有矿产资源的战略评估: 基于战略性新兴产业发展的视角[J]. 中国工业经济, 2014, (7):44-57. [Li PF, Yang DH, Qu SN, et al. A strategic assessment of rare minerals: Based on the perspective of strategic emerging industries development[J]. China Industrial Economics, 2014, (7):44-57.] [Li P F, Yang D H, Qu S N, et al. A strategic assessment of rare minerals: Based on the perspective of strategic emerging industries development[J]. China Industrial Economics, 2014, (7): 44-57.]

    [15] HanH, GengY, Tate JE et al. Securing platinum-group metals for transport low-carbon transition[J]. One Earth, 1, 117-125(2019).

    [16] Pieronni MP, McalooneT, PigossoD A C. Business model innovation for circular economy and sustainability: A review of approaches[J]. Journal of Cleaner Production, 215, 198-216(2019).

    [17] HaoH, GengY, Tate JE et al. Impact of transport electrification on critical metal sustainability with a focus on the heavy-duty segment[J]. Nature Communications, 10, 1-7(2019).

    [18] HotellingH. The economics of exhaustible resources[J]. Bulletin of Mathematical Biology, 39, 137-175(1931).

    [19] YanoJ, MuroiT, Sakai SI. Rare earth element recovery potentials from end-of-life hybrid electric vehicle components in 2010-2030[J]. Journal of Material Cycles and Waste Management, 18, 655-664(2016).

    [20] Hartwick JM, Dasgupta PS, Heal GM. Economic theory and exhaustible resources[J]. The Canadian Journal of Economics/Revue Canadienne d’Economique, 14, 355-358(1981).

    [21] 梁姗姗, 杨丹辉. 矿产资源消费与产业结构演进的研究综述[J]. 资源科学, 2018,40(3):535-546.

    [22] 刘东霖, 张俊瑞. 我国能源消费需求的时变弹性分析[J]. 中国人口·资源与环境, 2010,20(2):92-97. [Liu DL, Zhang JR. Time varying elasticity of energy consumption demand[J]. China Population, Resources and Environment, 2010,20(2):92-97.] [Liu D L, Zhang J R. Time varying elasticity of energy consumption demand[J]. China Population, Resources and Environment, 2010, 20(2): 92-97.]

    [23] WeinzettelJ, KovandaJ. Structural decomposition analysis of raw material consumption[J]. Journal of Industrial Ecology, 15, 893-907(2011).

    [24] SongY, Huang JB, Zhang YJ et al. Drivers of metal consumption in China: An input- output structural decomposition analysis[J]. Resources Policy, 63, 101421(2019).

    [25] 王双英, 李东, 王群伟. 基于LMDI指数分解的中国石油消费影响因素分析[J]. 资源科学, 2011,33(4):759-765.

    [26] DuK, LinB. Understanding the rapid growth of China’s energy consumption: A comprehensive decomposition framework[J]. Energy, 90, 570-577(2015).

    [27] WangC. Decomposing energy productivity change: A distance function approach[J]. Energy, 32, 1326-1333(2007).

    [28] WoodR, LenzenM. Structural path decomposition[J]. Energy Economics, 31, 335-341(2009).

    [29] Cheng FF, Yang SL, Zhou KL. Quantile partial adjustment model with application to predicting energy demand in China[J]. Energy(2019). https://www.ncbi.nlm.nih.gov/pubmed/23761949

    [30] Benjamin NI, Lin BQ. Influencing factors on electricity demand in Chinese nonmetallic mineral products industry: A quantile perspective[J]. Journal of Cleaner Production(2020). https://www.ncbi.nlm.nih.gov/pubmed/32834572

    [31] Alam MM, Murad MW. The impacts of economic growth, trade openness and technological progress on renewable energy use in organization for economic cooperation and development countries[J]. Renewable Energy, 145, 382-390(2020).

    [32] Izatt RM, Izatt SR, Bruening RL et al. Challenges to achievement of metal sustainability in our high-tech society[J]. Chemical Society Reviews, 43, 2451-2475(2014).

    [33] 任泽平, 熊柴, 孙婉莹, 等. 中国新基建研究报告[J]. 发展研究, 2020, (4):4-19. [Ren ZP, XiongC, Sun WY, et al. Research report of China’s new infrastructure[J]. Development Research, 2020, (4):4-19.] [Ren Z P, Xiong C, Sun W Y, et al. Research report of China’s new infrastructure[J]. Development Research, 2020, (4): 4-19.]

    [34] 韩莹. 技术进步对我国经济增长贡献率的测定及实证分析[J]. 经济问题探索, 2008, (4):11-16.

    [35] 李晓宁. 经济增长的技术进步效率研究: 1978-2010[J]. 科技进步与对策, 2012,29(7):5-10. [Li XN. Study on technology advancement efficiency of economic growth: 1978-2010[J]. Science & Technology Progress and Policy, 2012,29(7):5-10.] [Li X N. Study on technology advancement efficiency of economic growth: 1978-2010[J]. Science & Technology Progress and Policy, 2012, 29(7): 5-10.]

    [36] SunX, HaoH, Liu ZW et al. The dynamic equilibrium mechanism of regional lithium flow for transportation electrification[J]. Environmental Science & Technology, 53, 743-751(2018).

    [37] Nassar NT, Wilburn DR, Goonan TG. wind and solar photo voltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios[J]. Applied Energy, 183, 1209-1226(2016).

    [38] ArowosolaA, GaustadG. Estimating increasing diversity and dissipative loss of critical metals in the aluminum automotive sector[J]. Resources, Conservation and Recycling, 150, 104382(2019).

    [39] Li XY, Ge JP, Chen WQ et al. Scenarios of rare earth elements demand driven by automotive electrification in China: 2018-2030[J]. Resources, Conservation and Recycling, 145, 322-331(2019).

    [40] 李健, 徐海成. 技术进步与我国产业结构调整关系的实证研究[J]. 软科学, 2011,25(4):8-13. [LiJ, Xu HC. Research on the relationship between technical progress and adjustment of industry structure in China[J]. Soft Science, 2011,25(4):8-13.] [Li J, Xu H C. Research on the relationship between technical progress and adjustment of industry structure in China[J]. Soft Science, 2011, 25(4): 8-13.]

    [41] LangkauS, LuisA T E. Technological change and metal demand over time: What can we learn from the past?[J]. Sustainable Materials and Technologies, 16, 54-59(2018).

    [42] Burns LS, FriedmannJ. Natural Resources Endowment and Regional Economic Growth[report]. Springfield: Environment, Development and Public Policy (Cities and Development)(1961).

    [43] 陈其慎, 于汶加, 张艳飞, 等. 资源-产业雁行式演进规律[J]. 资源科学, 2015,37(5):871-882.

    [44] 王昶, 黄健柏. 中国金属资源战略形势变化及其产业政策调整研究[J]. 中国人口·资源与环境, 2014,24(171):391-394. [WangC, Huang JB. The changes in strategic situation of China’s metal resources and the adjustment of the industrial policy[J]. China Population, Resources and Environment, 2014,24(171):391-394.] [Wang C, Huang J B. The changes in strategic situation of China’s metal resources and the adjustment of the industrial policy[J]. China Population, Resources and Environment, 2014, 24(171): 391-394.]

    [45] 王昶, 宋慧玲, 耿红军, 等. 关键新材料创新突破的研究回顾与展望[J]. 资源科学, 2019,41(2):207-218.

    [46] SprecherB, ReemeyerL, AlonsoE et al. How black swan disruptions impact minor metals[J]. Resources Policy, 54, 88-96(2017).

    [47] Critical Metals for Future Sustainable Technologies and Their Recycling Potential[report]. Darmstadt: Öko-Institut, United Nations Environment Programme(2009).

    [48] Kim JY, Shin DO, ChangT et al. Effect of the dielectric constant of a liquid electrolyte on lithium metal anodes[J]. Electrochimica Acta, 300, 299-305(2019).

    [49] Nevin KP, Woodard TL, Franks AE et al. Microbial electrosynjournal: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds[J]. mBio(2010). https://www.ncbi.nlm.nih.gov/pubmed/32994333

    [50] L?vik AN, HagelükenC, W?gerP. Improving supply security of critical metals: Current developments and research in the EU[J]. Sustainable Materials and Technologies, 15, 9-18(2018).

    [51] Nevin KP, Hensley SA, Franks AE et al. Electrosynjournal of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms[J]. Applied and Environmental Microbiology, 77, 2882-2886(2011).

    [52] HartmannP, Bender CL, VracarM et al. A rechargeable room-temperature sodium superoxide (NaO2) battery[J]. Nature Materials, 12, 228-232(2013).

    [53] Slade ME. Recent advances in econometric estimation of materials substitution[J]. Resources Policy, 7, 103-109(1981).

    [54] 王安建, 王高尚, 张建华, 等. 矿产资源与国家经济发展[M]. 北京: 地质出版社, 2002. [Wang AJ, Wang GS, Zhang JH, et al.Mineral Resources and National Economic Development[M]. Beijing: Geological Publishing House, 2002.] [Wang A J, Wang G S, Zhang J H, et al. Mineral Resources and National Economic Development[M]. Beijing: Geological Publishing House, 2002.]

    [55] 任忠宝, 王世虎, 唐宇, 等. 矿产资源需求拐点理论与峰值预测[J]. 自然资源学报, 2012,27(9):1480-1489.

    [56] PauliukS, WangT, Muller DB et al. Moving toward the circular economy: The role of stocks in the Chinese steel cycle[J]. Environmental Science & Technology, 46, 148-154(2012).

    [57] MaW, ZhuX, WangM. Forecasting iron ore import and consumption of China using grey model optimized by particle swarm optimization algorithm[J]. Resources Policy, 38, 613-620(2013).

    [58] 刘艳飞, 张艳, 于汶加, 等. 全球原镁需求预测及中国合理产能分析[J]. 资源科学, 2015,37(5):1047-1058.

    [59] XuanY, YueQ. Forecast of steel demand and the availability of depreciated steel scrap in China[J]. Resources Conservation & Recycling, 109, 1-12(2016).

    [60] Schipper BW, Lin HC, Meloni MA et al. Estimating global copper demand until 2100 with regression and stock dynamics[J]. Resources, Conservation and Recycling, 132, 28-36(2018).

    [61] 王昶, 宋慧玲, 左绿水, 等. 国家金属资源安全研究回顾与展望[J]. 资源科学, 2017,39(5):805-817.

    [62] 王安建, 王高尚, 陈其慎, 等. 能源与国家经济发展[M]. 北京: 地质出版社, 2008. [Wang AJ, Wang GS, Chen QS, et al.Energy and National Economic Development[M]. Beijing: Geology Press, 2008.] [Wang A J, Wang G S, Chen Q S, et al. Energy and National Economic Development[M]. Beijing: Geology Press, 2008.]

    [63] 王安建, 王高尚, 陈其慎, 等. 矿产资源需求理论与模型预测[J]. 地球学报, 2010,31(2):137-147. [Wang AJ, Wang GS, Chen QS, et al. The mineral resources demand theory and the prediction model[J]. Acta Geoscientica Sinica, 2010,31(2):137-147.] [Wang A J, Wang G S, Chen Q S, et al. The mineral resources demand theory and the prediction model[J]. Acta Geoscientica Sinica, 2010, 31(2): 137-147.]

    [64] 王安建, 王高尚, 周凤英. 能源和矿产资源消费增长的极限与周期[J]. 地球学报, 2017,38(1):3-10. [Wang AJ, Wang GS, Zhou FY. The limits and cycles of the growth of energy and mineral resources consumption[J]. Acta Geoscientica Sinica, 2017,38(1):3-10.] [Wang A J, Wang G S, Zhou F Y. The limits and cycles of the growth of energy and mineral resources consumption[J]. Acta Geoscientica Sinica, 2017, 38(1): 3-10.]

    [65] 陈其慎, 于汶加, 张艳飞, 等. 点石: 未来20年全球矿产资源产业发展研究[M]. 北京: 科学出版社, 2016. [Chen QS, Yu WJ, Zhang YF, et al. Point Stone: Research on the Development of Global Mineral Resources Industry in the Next 20 Years[M]. Beijing: Science Press, 2016.] [Chen Q S, Yu W J, Zhang Y F, et al. Point Stone: Research on the Development of Global Mineral Resources Industry in the Next 20 Years[M]. Beijing: Science Press, 2016.]

    [66] ElshkakiA, Graedel TE. Dynamic analysis of the global metals flows and stocks in electricity generation technologies[J]. Journal of Cleaner Production, 59, 260-273(2013).

    [67] Bustamante ML, GaustadG. Challenges in assessment of clean energy supply-chains based on byproduct minerals: A case study of tellurium use in thin film photovoltaics[J]. Applied Energy, 123, 397-414(2014).

    [68] CaoZ, O’SullivanC, TanJ et al. Resourcing the fairytale country with wind power: A dynamic material flow analysis[J]. Environmental Science & Technology, 53, 11313-11322(2019).

    [69] ManbergerA, StenqvistB. Global metal flows in the renewable energy transition: Exploring the effects of substitutes, technological mix and development[J]. Energy Policy, 119, 226-241(2018).

    [70] ElshkakiA, ShenL. Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications[J]. Energy, 180, 903-917(2019).

    [71] Wiedmann TO, SchandlH, MoranD. The footprint of using metals: New metrics of consumption and productivity[J]. Environmental Economics and Policy Studies, 17, 369-388(2015).

    [72] NakicenovicN, SwartR. Emission Scenarios[report](2000).

    [73] Global Environmental Outlook 4[report]. Nairobi: Environment for Development, United Nations Environment Programme(2007).

    [74] Energy Revolution: A Sustainable World Energy Outlook[report]. The Netherlands: Greenpeace International, European Renewable Energy Council(2008).

    [75] AlonsoE, Sherman AM, Wallington TJ et al. Evaluating rare earth element availability: A case with revolutionary demand from clean technologies[J]. Environmental Science & Technology, 46, 3406-3414(2012).

    [76] HoenderdaalS, Tercero EL, Marscheider WF et al. Can a dysprosium shortage threaten green energy technologies?[J]. Energy, 49, 344-355(2013).

    [77] KimJ, GuillaumeB, ChungJ et al. Critical and precious materials consumption and requirement in wind energy system in the EU 27[J]. Applied Energy, 139, 327-334(2015).

    [78] Pavel CC, Lacal AR, MarmierA et al. Substitution strategies for reducing the use of rare earths in wind turbines[J]. Resource Policy, 52, 349-357(2017).

    [79] Liu DH, Gao XY, An HZ et al. Supply and demand response trends of lithium resources driven by the demand of emerging renewable energy technologies in China[J]. Resources Conservation & Recycling, 145, 311-321(2019).

    [80] HouariY, SpeirsJ, CandeliseC et al. A system dynamics model of tellurium availability for CdTe PV[J]. Progress in Photovoltaics: Research and Applications, 22, 129-146(2014).

    [81] TaziN, KimJ, BouzidiY et al. Waste and material flow analysis in the end-of-life wind energy system[J]. Resources Conservation Recycling, 145, 199-207(2019).

    [82] MoreauV, Dos RP, VuilleF. Enough metals? Resource constraints to supply a fully renewable energy system[J]. Resources(2019). https://www.ncbi.nlm.nih.gov/pubmed/28367503

    [83] FishmanT, Graedel TE. Impact of the establishment of US offshore wind power on neodymium flows[J]. Nat. Sustain, 2, 332-338(2019).

    [84] Hertwich EG, GibonT, Bouman EA et al. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 6277-6282(2015).

    [85] Imholte DD, Nguyen RT, VedantamA et al. An assessment of U. S. rare earth availability for supporting U. S. wind energy growth targets[J]. Energy Policy, 113, 294-305(2018).

    [86] GloserS, SoulierM, TerceroE L A. Dynamic analysis of global copper flows. Global stocks, post consumer material flows, recycling indicators, and uncertainty evaluation[J]. Environmental Science & Technology, 47, 6564-6572(2013).

    [87] Mancheri NA, SprecherB, DeetmanS et al. Resilience in the tantalum supply chain. Resources[J]. Resources, Conservation and Recycling, 129, 56-69(2018).

    [88] Sverdrup HU. Modelling global extraction, supply, price and depletion of the extractable geological resources with the LITHIUM model[J]. Resources, Conservation and Recycling, 114, 112-129(2016).

    [89] 王琳, 齐中英, 潘峰. 社会演进中钢未来使用规律预测及政策分析[J]. 运筹与管理, 2017,26(1):173-181. [WangL, Qi ZY, PanF. Patterns prediction and policy analysis of steel use in societal evolution[J]. Operations Research and Management Science, 2017,26(1):173-181.] [Wang L, Qi Z Y, Pan F. Patterns prediction and policy analysis of steel use in societal evolution[J]. Operations Research and Management Science, 2017, 26(1): 173-181.]

    [90] 张超, 王韬, 陈伟强, 等. 中国钢铁长期需求模拟及产能过剩态势评估[J]. 中国人口·资源与环境, 2018,28(10):169-176. [ZhangC, WangT, Chen WQ, et al. Simulation of China’s long-term steel demand and evaluation of the trend of overcapacity of steel industry[J]. China Population, Resources and Environment, 2018,28(10):169-176.] [Zhang C, Wang T, Chen W Q, et al. Simulation of China’s long-term steel demand and evaluation of the trend of overcapacity of steel industry[J]. China Population, Resources and Environment, 2018, 28(10): 169-176.]

    [91] Müller DB, WangT, DuvalB et al. Exploring the engine of anthropogenic iron cycles[J]. Proceedings of the National Academy of Sciences of the United States of America, 103, 16111-16116(2006).

    [92] StampA, Wager PA, HellwegS. Linking energy scenarios with metal demand € modeling: The case of indium in CIGS solar cells[J]. Resources, Conservation and Recycling, 93, 156-167(2014).

    [93] Brunner PH, RechbergerH. Practical handbook of material flow analysis[J]. The International Journal of Life Cycle Assessment, 9, 337-338(2004).

    [94] ElshkakiA, Graedel TE, CiacciL et al. Resource demand scenarios for the major metals[J]. Environmental Science & Technology, 52, 2491-2497(2018).

    [95] DeetmanS, PauliukS, Van VuurenD P et al. Scenarios for demand growth of metals in electricity generation technologies, cars, and electronic appliances[J]. Environmental Science & Technology: ES&T, 52, 4950-4959(2018).

    [96] HabibK, WenzelH. Exploring rare earths supply constraints for the emerging clean energy technologies and the role of recycling[J]. Journal of Cleaner Production, 84, 348-359(2014).

    [97] MartinG, RentschL, H?ckM et al. Lithium market research: Global supply, future demand and price development[J]. Energy Storage Materials, 6, 171-179(2017).

    [98] KucukvarM, Onat NC, Haider MA. Material dependence of national energy development plans: The case for Turkey and United Kingdom[J]. Journal of Cleaner Production, 200, 490-500(2018).

    [99] WatariT, McLellanB C, OgataS et al. Analysis of potential for critical metal resource constraints in the international energy agency’s long-term low-carbon energy scenarios[J]. Minerals(2018). https://www.ncbi.nlm.nih.gov/pubmed/31223499

    [100] WatariT, McLellanB C, OgataS et al. Analysis of potential for critical metal resource constraints in the international energy agency’s long-term low-carbon energy scenarios[J]. Minerals(2018). https://www.ncbi.nlm.nih.gov/pubmed/31223499

    [101] CandeliseaC, Spiersa JF, GrossR J K. Materials availability for thin film (TF) PV technologies development: A real concern?[J]. Renewable and Sustainable Energy Reviews, 15, 4972-4981(2011).

    [102] Chen YH, Chen CY, Lee SC. Technology forecasting and patent strategy of hydrogen energy and fuel cell technologies[J]. International Journal of Hydrogen Energy, 36, 6957-6969(2011).

    [103] LanziE, VerdoliniE. Efficiency-improving fossil fuel technologies for electricity generation: Data selection and trends[J]. Energy Policy, 39, 7000-7014(2011).

    [104] 王班班, 齐绍洲. 有偏技术进步、要素替代与中国工业能源强度[J]. 经济研究, 2014, (2):117-129. [Wang BB, Qi SZ. Biased technological progress, factor substitution and China’s industrial energy intensity[J]. Economic Research Journal, 2014, (2):117-129.] [Wang B B, Qi S Z. Biased technological progress, factor substitution and China’s industrial energy intensity[J]. Economic Research Journal, 2014, (2): 117-129.]

    [105] KohH, Magee CL. A functional approach for studying technological progress: Application to information technology[J]. Technological Forecasting and Social Change, 73, 1061-1083(2006).

    [106] Saur MI. How methodological issues affect the energy indicator results for different electricity generation technologies[J]. Energy Policy, 63, 283-299(2013).

    [107] Zhang YG, GuY, Chen XY et al. An effective indicator for evaluation of wavelength extending InGaAs photodetector technologies[J]. Infrared Physics & Technology, 83, 45-50(2017).

    [108] AcemogluD. Directed technical change[J]. Review of Economic Studies, 69, 781-809(2002).

    Xuesong DONG, Jianbai HUANG, Meirui ZHONG, Jinyu CHEN, Gang LIU, Yi SONG. A review on the impact of technological progress on critical metal mineral demand[J]. Resources Science, 2020, 42(8): 1592
    Download Citation