• Electronics Optics & Control
  • Vol. 31, Issue 11, 96 (2024)
WANG Yali1, LI Bingchun1, LIU Chen1, YAO Xiuhong1..., DAI Mingjun1 and JIA Sen2|Show fewer author(s)
Author Affiliations
  • 1College of Computer Science and technology, Kashi University, Kashi 844000, China
  • 2College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518000, China
  • show less
    DOI: 10.3969/j.issn.1671-637x.2024.11.014 Cite this Article
    WANG Yali, LI Bingchun, LIU Chen, YAO Xiuhong, DAI Mingjun, JIA Sen. Classification of Hyperspectral Remote Sensing Images Based on LTP Encoded Fractional Order Gabor[J]. Electronics Optics & Control, 2024, 31(11): 96 Copy Citation Text show less
    References

    [3] SU H J, YANG H, DU Q, et al. Semisupervised band clustering for dimensionality reduction of hyperspectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(6): 1135-1139.

    [4] BANDOS T V, BRUZZONE L, CAMPS-VALLS G. Classification of hyperspectral images with regularized linear discriminant analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(3): 862-873.

    [5] ZABALZE J, REN J, ZHENG J, et al. Novel two-dimensional singular spectrum analysis for effective feature extraction and data classification in hyperspectral imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8): 1-16.

    [6] FAUVEL M, CHANUSSOT J, BENEDIKTSSON J A. Kernel principa component analysis for the classification of hyperspectral remote sensing data over urban areas[J]. EURASIP Journal on Advances in Signal Processing, 2009, 2009(1): 1-14.

    [7] LI J, HUANG X, GAMBA P, et al. Multiple feature learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience & Remote Sensing, 2015, 53(3): 1592-1606.

    [8] LI W, CHEN C, SU H J, et al. Local binary patterns and extreme learning machine for hyperspectral imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7): 3681-3693.

    [11] HU W, HUANG Y Y, WEI L, et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015, 2015(3): 258619.

    [12] RASTI B, HONG D, HANG R, et al. Feature extraction for hyperspectral imagery: the evolution from shallow to deep: overview and toolbox[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(4): 60-88.

    [13] XU X D, LI W, RAN Q, et al. Multisource remote sensing data classification based on convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 56(2): 937-949.

    [14] HAMIDA A B, BENOIT A, LAMBERT P, et al.3-D deep learning approach for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4420-4434.

    [16] LIU S J, SHI Q, ZHANG L P. Few-shot hyperspectral image classification with unknown classes using multitask deep learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(6): 5085-5102.

    [17] ZHU L, CHEN Y S, GHAMSI P, et al. Generative adversarial networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5046-5063.

    [19] HECKE W V, LEEMANS A, BACKER S D, et al. Comparing isotropic and anisotropic smoothing for voxelbased DTI analyses: a simulation study[J]. Human Brain Mapping, 2010, 31(1): 98-114.

    [20] JIA S, ZHU Z X, SHEN L L, et al. A two-stage feature selection framework for hyperspectral image classification using few labeled samples[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(4): 1023-1035.

    [21] ZHU Z X, JIA S, HE S, et al. Three-dimensional Gabor feature extraction for hyperspectral imagery classification using a memetic framework[J]. Information Sciences, 2015, 298(C): 274-287.

    [22] JIA S, HU J, ZHU J S, et al. Three-dimensional local binary patterns for hyperspectral imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4): 2399-2413.

    [23] JIA S, SHEN L L, ZHU J S, et al. A 3-D Gabor phase-based coding and matching framework for hyperspectral imagery classification[J]. IEEE Transactions on Cybernetics, 2017, 48(4): 1176-1188.

    [26] TAN X, TRIGGS B. Enhanced local texture feature sets for face recognition under difficult lighting conditions[J]. IEEE Transactions on Image Processing, 2010, 19(6): 1635-1650.

    [28] DAUGMAN J G. High confidence visual recognition of persons by a test of statistical independence[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(11): 1148-1161.

    WANG Yali, LI Bingchun, LIU Chen, YAO Xiuhong, DAI Mingjun, JIA Sen. Classification of Hyperspectral Remote Sensing Images Based on LTP Encoded Fractional Order Gabor[J]. Electronics Optics & Control, 2024, 31(11): 96
    Download Citation