• Frontiers of Optoelectronics
  • Vol. 13, Issue 3, 265 (2020)
Shaiqiang MU1、2, Qiufeng YE2、3, Xingwang ZHANG2、3, Shihua HUANG1、*, and Jingbi YOU2、3
Author Affiliations
  • 1Physics Department, Zhejiang Normal University, Jinhua 321004, China
  • 2Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1007/s12200-020-1041-z Cite this Article
    Shaiqiang MU, Qiufeng YE, Xingwang ZHANG, Shihua HUANG, Jingbi YOU. Polymer hole-transport material improving thermal stability of inorganic perovskite solar cells[J]. Frontiers of Optoelectronics, 2020, 13(3): 265 Copy Citation Text show less
    References

    [1] Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of Applied Chemical Science, 2009, 131(17): 6050–6051

    [2] National Renewable Energy Laboratory (NREL). Best Cell Efficiencies, available at the website of nrel.gov/pv/cell-efficiency (accessed: January 2019)

    [3] Im J H, Jang I H, Pellet N, Gr?tzel M, Park N G. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nature Nanotechnology, 2014, 9(11): 927– 932

    [4] Stoumpos C C, Malliakas C D, Kanatzidis MG. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic Chemistry, 2013, 52(15): 9019–9038

    [5] Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J. Electron-hole diffusion lengths> 175 mm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347(6225): 967–970

    [6] D’Innocenzo V, Grancini G, Alcocer M J, Kandada A R, Stranks S D, Lee M M, Lanzani G, Snaith H J, Petrozza A. Excitons versus free charges in organo-lead tri-halide perovskites. Nature Communications, 2014, 5(4): 3586

    [7] Zhu H, Miyata K, Fu Y, Wang J, Joshi P P, Niesner D, Williams K W, Jin S, Zhu X Y. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science, 2016, 353(6306): 1409–1413

    [8] Svane K L, Forse A C, Grey C P, Kieslich G, Cheetham A K,Walsh A, Butler K T. How strong is the hydrogen bond in hybrid perovskites? Journal of Physical Chemistry Letters, 2017, 8(24): 6154–6159

    [9] hen H, Xiang S, Li W, Liu H, Zhu L, Yang S. Inorganic perovskite solar cells: a rapidly growing field. Solar RRL, 2018, 2(2): 1700188

    [10] Sim K M, Swarnkar A, Nag A, Chung D S. Phase stabilized α- CsPbI3 perovskite nanocrystals for photodiode applications. Laser & Photonics Reviews, 2018, 12(1): 1700209

    [11] Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Gr?tzel M, Han H. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345(6194): 295–298

    [12] Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z, You J. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nature Communications, 2018, 9(1): 2225

    [13] Wang Y, Dar M I, Ono L K, Zhang T, Kan M, Li Y, Zhang L,Wang X, Yang Y, Gao X, Qi Y, Gr?tzel M, Zhao Y. Thermodynamically stabilized β-CsPbI3–based perovskite solar cells with efficiencies> 18%. Science, 2019, 365(6453): 591–595

    [14] Wang K, Jin Z, Liang L, Bian H, Bai D,Wang H, Zhang J,Wang Q, Liu S. All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond

    [15] Nature Communications, 2018, 9 (1): 4544 15. Beal R E, Slotcavage D J, Leijtens T, Bowring A R, Belisle R A, Nguyen W H, Burkhard G F, Hoke E T, McGehee M D. Cesium lead halide perovskites with improved stability for tandem solar cells. Journal of Physical Chemistry Letters, 2016, 7(5): 746–751

    [16] Wang Y, Zhang T, Kan M, Zhao Y. Bifunctional stabilization of allinorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics. Journal of the American Chemical Society, 2018, 140(39): 12345– 12348

    [17] Yang F, Hirotani D, Kapil G, Kamarudin M A, Ng C H, Zhang Y, Shen Q, Hayase S. All-inorganic CsPb1 – xGexI2Br perovskite with enhanced phase stability and photovoltaic performance. Angewandte Chemie International Edition, 2018, 130(39): 12927–12931

    [18] Sanchez S, Christoph N, Grobety B, Phung N, Steiner U, Saliba M, Abate A. Efficient and stable inorganic perovskite solar cells manufactured by pulsed flash infrared annealing. Advanced Energy Materials, 2018, 8(30): 1802060

    [19] Zeng Q, Zhang X, Feng X, Lu S, Chen Z, Yong X, Redfern S A T, Wei H, Wang H, Shen H, Zhang W, Zheng W, Zhang H, Tse J S, Yang B. Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V. Advanced Materials, 2018, 30(9): 1705393

    [20] Bian H, Bai D, Jin Z, Wang K, Liang L,Wang H, Zhang J,Wang Q, Liu S F. Graded bandgap CsPbI2+xBr1 – x, perovskite solar cells with a stabilized efficiency of 14.4%. Joule, 2018, 2(8): 1500–1510

    [21] Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T, Luther J M. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for highefficiency photovoltaics. Science, 2016, 354(6308): 92–95

    [22] Liu J, Wu Y, Qin C, Yang X, Yasuda T, Islam A, Zhang K, Peng W, Chen W, Han L. A dopant-free hole-transporting material for efficient and stable perovskite solar cells. Energy & Environmental Science, 2014, 7(9): 2963–2967

    [23] Franckevi?ius M, Mishra A, Kreuzer F, Luo J, Zakeeruddin S M, Gratzel M. A dopant-free spirobi[cyclopenta[2,1-b:3,4-b′]dithiophene] based hole-transport material for efficient perovskite solar cells. Materials Horizons, 2015, 2(6): 613–618

    [24] Liu Y, Chen Q, Duan H S, Zhou H, Yang Y, Chen H, Luo S, Song T B, Dou L, Hong Z, Yang Y. A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(22): 11940–11947

    [25] Jung E H, Jeon N J, Park E Y, Moon C S, Shin T J, Yang T Y, Noh J H, Seo J. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 2019, 567(7749): 511–515

    [26] Ye Q, Zhao Y, Mu S, Ma F, Gao F, Chu Z, Yin Z, Gao P, Zhang X, You J. Cesium lead inorganic solar cell with efficiency beyond 18% via reduced charge recombination. Advanced Materials, 2019, 31 (49): e1905143

    [27] Shao Y, Xiao Z, Bi C, Yuan Y, Huang J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nature Communications, 2014, 5 (1): 5784

    [28] Zeng Q, Zhang X, Feng X, Lu S, Chen Z, Yong X, Redfern S A T, Wei H, Wang H, Shen H, Zhang W, Zheng W, Zhang H, Tse J S, Yang B. Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V. Advanced Materials, 2018, 30(9): 1705393

    [29] Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J. Surface passivation of perovskite film for efficient solar cells. Nature Photonics, 2019, 13(7): 460–466

    [30] Leijtens T, Ding I K, Giovenzana T, Bloking J T, McGehee M D, Sellinger A. Hole transport materials with low glass transition temperatures and high solubility for application in solid-state dyesensitized solar cells. ACS Nano, 2012, 6(2): 1455–1462

    [31] Abate A, Leijtens T, Pathak S, Teuscher J, Avolio R, Errico M E, Kirkpatrik J, Ball J M, Docampo P, McPherson I, Snaith H J. Lithium salts as “redox active” p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15(7): 2572– 2579

    [32] Tiep N H, Ku Z L, Fan H J. Recent advances in improving the stability of perovskite solar cells. Advanced Energy Materials, 2016, 6(3): 1501420

    Shaiqiang MU, Qiufeng YE, Xingwang ZHANG, Shihua HUANG, Jingbi YOU. Polymer hole-transport material improving thermal stability of inorganic perovskite solar cells[J]. Frontiers of Optoelectronics, 2020, 13(3): 265
    Download Citation