• Nano-Micro Letters
  • Vol. 16, Issue 1, 021 (2024)
Yijian Gao1, Ying Liu1, Xiliang Li1, Hui Wang2..., Yuliang Yang1, Yu Luo1, Yingpeng Wan3, Chun-sing Lee3,*, Shengliang Li1,** and Xiao-Hong Zhang2,***|Show fewer author(s)
Author Affiliations
  • 1College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People’s Republic of China
  • 2Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, People’s Republic of China
  • 3Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong SAR, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01219-x Cite this Article
    Yijian Gao, Ying Liu, Xiliang Li, Hui Wang, Yuliang Yang, Yu Luo, Yingpeng Wan, Chun-sing Lee, Shengliang Li, Xiao-Hong Zhang. A Stable Open-Shell Conjugated Diradical Polymer with Ultra-High Photothermal Conversion Efficiency for NIR-II Photo-Immunotherapy of Metastatic Tumor[J]. Nano-Micro Letters, 2024, 16(1): 021 Copy Citation Text show less
    References

    [1] J. Li, L. Xie, B. Li, C. Yin, G. Wang et al., Engineering a hydrogen-sulfide-based nanomodulator to normalize hyperactive photothermal immunogenicity for combination cancer therapy. Adv. Mater. 33(22), e2008481 (2021).

    [2] Y. Jiang, J. Huang, C. Xu, K. Pu, Activatable polymer nanoagonist for second near-infrared photothermal immunotherapy of cancer. Nat. Commun. 12(1), 742 (2021).

    [3] Y. Li, Y. Tang, W. Hu, Z. Wang, X. Li et al., Incorporation of robust NIR-II fluorescence brightness and photothermal performance in a single large π-conjugated molecule for phototheranostics. Adv. Sci. 10(3), 2204695 (2022).

    [4] K. Wang, Y. Li, X. Wang, Z. Zhang, L. Cao et al., Gas therapy potentiates aggregation-induced emission luminogen-based photoimmunotherapy of poorly immunogenic tumors through cgas-sting pathway activation. Nat. Commun. 14(1), 2950 (2023).

    [5] J. Li, Y. Luo, K. Pu, Electromagnetic nanomedicines for combinational cancer immunotherapy. Angew. Chem. Int. Ed. 60(23), 12682–12705 (2021).

    [6] X. Wei, C. Zhang, S. He, J. Huang, J. Huang et al., A dual-locked activatable phototheranostic probe for biomarker-regulated photodynamic and photothermal cancer therapy. Angew. Chem. Int. Ed. 61(26), e202202966 (2022).

    [7] X. Hu, N. Wang, X. Guo, Z. Liang, H. Sun et al., A sub-nanostructural transformable nanozyme for tumor photocatalytic therapy. Nano-Micro Lett. 14, 101 (2022).

    [8] C. Xu, Y. Jiang, Y. Han, K. Pu, R. Zhang, A polymer multicellular nanoengager for synergistic NIR-II photothermal immunotherapy. Adv. Mater. 33(14), e2008061 (2021).

    [9] Y. Xia, S. Fu, Q. Ma, Y. Liu, N. Zhang, Application of nano-delivery systems in lymph nodes for tumor immunotherapy. Nano-Micro Lett. 15, 145 (2023).

    [10] H. Feng, Y. Yuan, Y. Zhang, H.-J. Liu, X. Dong et al., Targeted micellar phthalocyanine for lymph node metastasis homing and photothermal therapy in an orthotopic colorectal tumor model. Nano-Micro Lett. 13, 145 (2021).

    [11] Z. Huang, Y. Liu, S. Li, C.-S. Lee, X.H. Zhang, From materials to devices: rationally designing solar steam system for advanced applications. Small Methods 6(10), e2200835 (2022).

    [12] J. Zhang, Y. Li, M. Jiang, H. Qiu, Y. Li et al., Self-assembled aza-bodipy and iron(iii) nanoparticles for photothermal-enhanced chemodynamic therapy in the NIR-II window. ACS Biomater. Sci. Eng. 9(2), 821–830 (2023).

    [13] N. Song, Z. Zhang, P. Liu, D. Dai, C. Chen et al., Pillar[5]arene-modified gold nanorods as nanocarriers for multi-modal imaging-guided synergistic photodynamic-photothermal therapy. Adv. Funct. Mater. 31(21), 2009924 (2021).

    [14] M. Fu, Y. Shen, H. Zhou, X. Liu, W. Chen et al., Gallium-based liquid metal micro/nanoparticles for photothermal cancer therapy. J. Mater. Sci. Technol. 142, 22–33 (2023).

    [15] B. Chen, C. Zhang, W. Wang, Z. Chu, Z. Zha et al., Ultrastable AgBis(2) hollow nanospheres with cancer cell-specific cytotoxicity for multimodal tumor therapy. ACS Nano 14(11), 14919–14928 (2020).

    [16] S. Xiao, Y. Lu, M. Feng, M. Dong, Z. Cao et al., Multifunctional FeS2 theranostic nanoparticles for photothermal-enhanced chemodynamic/photodynamic cancer therapy and photoacoustic imaging. Chem. Eng. J. 396, 125294 (2020).

    [17] M. Liu, H. Zhu, Y. Wang, C. Sevencan, B.L. Li, Functionalized MoS2-based nanomaterials for cancer phototherapy and other biomedical applications. ACS Mater. Lett. 3(5), 462–496 (2021).

    [18] Y. Zhao, M. Song, X. Yang, J. Yang, C. Du et al., Amorphous Ag2-xCuxS quantum dots: “All-in-one” theranostic nanomedicines for near-infrared fluorescence/photoacoustics dual-modal-imaging-guided photothermal therapy. Chem. Eng. J. 399, 125777 (2020).

    [19] G. Xu, X. Bao, J. Chen, B. Zhang, D. Li et al., In vivo tumor photoacoustic imaging and photothermal therapy based on supra-(carbon nanodots). Adv. Healthc. Mater. 8(2), e1800995 (2019).

    [20] C. Yang, M.R. Younis, J. Zhang, J. Qu, J. Lin et al., Programmable NIR-II photothermal-enhanced starvation-primed chemodynamic therapy using glucose oxidase-functionalized ancient pigment nanosheets. Small 16(25), e2001518 (2020).

    [21] S.W. Jun, P. Manivasagan, J. Kwon, V.T. Nguyen, S. Mondal et al., Folic acid-conjugated chitosan-functionalized graphene oxide for highly efficient photoacoustic imaging-guided tumor-targeted photothermal therapy. Int. J. Biol. Macromol. 155, 961–971 (2020).

    [22] P. Sun, X. Jiang, B. Sun, H. Wang, J. Li et al., Electron-acceptor density adjustments for preparation conjugated polymers with NIR-II absorption and brighter NIR-II fluorescence and 1064 nm active photothermal/gas therapy. Biomaterials 280, 121319 (2022).

    [23] X. Wang, X. Wang, Q. Yue, H. Xu, X. Zhong et al., Liquid exfoliation of tin nanodots as novel sonosensitizers for photothermal-enhanced sonodynamic therapy against cancer. Nano Today 39, 101170 (2021).

    [24] S. Hao, H. Han, Z. Yang, M. Chen, Y. Jiang et al., Recent advancements on photothermal conversion and antibacterial applications over mxenes-based materials. Nano-Micro Lett. 14, 178 (2022).

    [25] B. Guo, Z. Sheng, D. Hu, C. Liu, H. Zheng et al., Through scalp and skull NIR-II photothermal therapy of deep orthotopic brain tumors with precise photoacoustic imaging guidance. Adv. Mater. 30(35), e1802591 (2018).

    [26] Y. Wan, G. Lu, W.C. Wei, Y.H. Huang, S.L. Li et al., Stable organic photosensitizer nanoparticles with absorption peak beyond 800 nanometers and high reactive oxygen species yield for multimodality phototheranostics. ACS Nano 14(8), 9917–9928 (2020).

    [27] M. Li, Z. Li, D. Yu, M. Wang, D. Wang et al., Quinoid conjugated polymer nanoparticles with NIR-II absorption peak toward efficient photothermal therapy. Chem. (2022).

    [28] Y. Zou, W. Liu, W. Sun, J. Du, J. Fan et al., Highly inoxidizable heptamethine cyanine–glucose oxidase conjugate nanoagent for combination of enhanced photothermal therapy and tumor starvation. Adv. Funct. Mater. 32(17), 2111853 (2022).

    [29] J. Wu, Y. Zhang, K. Jiang, X. Wang, N.T. Blum et al., Enzyme-engineered conjugated polymer nanoplatform for activatable companion diagnostics and multistage augmented synergistic therapy. Adv. Mater. 34(18), e2200062 (2022).

    [30] D. Zheng, P. Yu, Z. Wei, C. Zhong, M. Wu et al., RBC membrane camouflaged semiconducting polymer nanoparticles for near-infrared photoacoustic imaging and photothermal therapy. Nano-Micro Lett. 12, 94 (2020).

    [31] H. Zhou, D. Tang, X. Kang, H. Yuan, Y. Yu et al., Degradable pseudo conjugated polymer nanoparticles with NIR-II photothermal effect and cationic quaternary phosphonium structural bacteriostasis for anti-infection therapy. Adv. Sci. 9(16), e2200732 (2022).

    [32] S. Li, Q. Deng, Y. Zhang, X. Li, G. Wen et al., Rational design of conjugated small molecules for superior photothermal theranostics in the NIR-II biowindow. Adv. Mater. 32(33), e2001146 (2020).

    [33] P. Chen, F. Qu, S. Chen, J. Li, Q. Shen et al., Bandgap modulation and lipid intercalation generates ultrabright D-A-D-based zwitterionic small-molecule nanoagent for precise NIR-II excitation phototheranostic applications. Adv. Funct. Mater. 32(52), 202208463 (2022).

    [34] C. Zhang, M. Xu, Z. Zeng, X. Wei, S. He et al., A polymeric extracellular matrix nanoremodeler for activatable cancer photo-immunotherapy. Angew. Chem. Int. Ed. 62(12), e202217339 (2023).

    [35] D. Wang, J. Liu, C. Wang, W. Zhang, G. Yang et al., Microbial synthesis of prussian blue for potentiating checkpoint blockade immunotherapy. Nat. Commun. 14(1), 2943 (2023).

    [36] Y. Qin, X. Chen, Y. Gui, H. Wang, B.Z. Tang et al., Self-assembled metallacage with second near-infrared aggregation-induced emission for enhanced multimodal theranostics. J. Am. Chem. Soc. 144(28), 12825–12833 (2022).

    [37] P. Xiao, W. Xie, J. Zhang, Q. Wu, Z. Shen et al., De novo design of reversibly PH-switchable NIR-II aggregation-induced emission luminogens for efficient phototheranostics of patient-derived tumor xenografts. J. Am. Chem. Soc. 145(1), 334–344 (2023).

    [38] D. Yan, M. Wang, Q. Wu, N. Niu, M. Li et al., Multimodal imaging-guided photothermal immunotherapy based on a versatile NIR-II aggregation-induced emission luminogen. Angew. Chem. Int. Ed. 61(27), e202202614 (2022).

    [39] J. Li, J. Wang, J. Zhang, T. Han, X. Hu et al., A facile strategy of boosting photothermal conversion efficiency through state transformation for cancer therapy. Adv. Mater. 33(51), e2105999 (2021).

    [40] R. Zheng, Q. Zhao, W. Qing, S. Li, Z. Liu et al., Carrier-free delivery of ultrasmall π-conjugated oligomer nanoparticles with photothermal conversion over 80% for cancer theranostics. Small 18(4), e2104521 (2022).

    [41] S. Chen, Y. Pan, K. Chen, P. Chen, Q. Shen et al., Increasing molecular planarity through donor/side-chain engineering for improved NIR-IIa fluorescence imaging and NIR-II photothermal therapy under 1064 nm. Angew. Chem. Int. Ed. 62(6), e202215372 (2023).

    [42] X. Wu, Y. Jiang, N.J. Rommelfanger, F. Yang, Q. Zhou et al., Tether-free photothermal deep-brain stimulation in freely behaving mice via wide-field illumination in the Near-Infrared-II window. Nat. Biomed. Eng. 6(6), 754–770 (2022).

    [43] C. Zhou, L. Zhang, T. Sun, Y. Zhang, Y. Liu et al., Activatable NIR-II plasmonic nanotheranostics for efficient photoacoustic imaging and photothermal cancer therapy. Adv. Mater. 33(3), 2006532 (2020).

    [44] D. Tang, H. Zhou, M. Cui, G. Liang, H. Zhang et al., NIR-II light accelerated prodrug reduction of Pt(iv)-incorporating pseudo semiconducting polymers for robust degradation and maximized photothermal/chemo-immunotherapy. Adv. Mater. 35(28), 2300048 (2023).

    [45] A. Abdurahman, T.J.H. Hele, Q. Gu, J. Zhang, Q. Peng et al., Understanding the luminescent nature of organic radicals for efficient doublet emitters and pure-red light-emitting diodes. Nat. Mater. 19(11), 1224–1229 (2020).

    [46] H. Guo, Q. Peng, X.K. Chen, Q. Gu, S. Dong et al., High stability and luminescence efficiency in donor-acceptor neutral radicals not following the aufbau principle. Nat. Mater. 18(9), 977–984 (2019).

    [47] X. Ai, E.W. Evans, S. Dong, A.J. Gillett, H. Guo et al., Efficient radical-based light-emitting diodes with doublet emission. Nature 563(7732), 536–540 (2018).

    [48] K. Oyaizu, H. Nishide, Radical polymers for organic electronic devices: A radical departure from conjugated polymers? Adv. Mater. 21(22), 2339–2344 (2009).

    [49] J. Kida, D. Aoki, H. Otsuka, Mechanophore activation enhanced by hydrogen bonding of diarylurea motifs: an efficient supramolecular force-transducing system. Aggregate. 2(3), e50 (2021).

    [50] T. Janoschka, M.D. Hager, U.S. Schubert, Powering up the future: Radical polymers for battery applications. Adv. Mater. 24(48), 6397–6409 (2012).

    [51] W. Zeng, J. Wu, Open-shell graphene fragments. Chem 7(2), 358–386 (2021).

    [52] M. Slota, A. Keerthi, W.K. Myers, E. Tretyakov, M. Baumgarten et al., Magnetic edge states and coherent manipulation of graphene nanoribbons. Nature 557(7707), 691–695 (2018).

    [53] X. Hu, W. Wang, D. Wang, Y. Zheng, The electronic applications of stable diradicaloids: present and future. J. Mater. Chem. C 6(42), 11232–11242 (2018).

    [54] L. Li, Y. Li, A study on the origin of the radical in fullerene and graphene. The J. Phys. Chem. C 122(16), 8780–8787 (2018).

    [55] Y. Li, L. Li, Y. Wu, Y. Li, A review on the origin of synthetic metal radical: Singlet open-shell radical ground state? J. Phys. Chem. C 121(15), 8579–8588 (2017).

    [56] J. Guo, C. Zhou, S. Xie, S. Luo, T.Y. Gopalakrishna et al., Large aromatic hydrocarbon radical cation with global aromaticity and state-associated magnetic activity. Chem. Mater. 32(14), 5927–5936 (2020).

    [57] Z. Chen, W. Li, M.A. Sabuj, Y. Li, W. Zhu et al., Evolution of the electronic structure in open-shell donor-acceptor organic semiconductors. Nat. Commun. 12(1), 5889 (2021).

    [58] T. Luo, Y. Wang, J. Hao, P.A. Chen, Y. Hu et al., Furan-extended helical rylenes with fjord edge topology and tunable optoelectronic properties. Angew. Chem. Int. Ed. 62(5), e202214653 (2023).

    [59] Z. Chen, W. Li, Y. Zhang, Z. Wang, W. Zhu et al., Aggregation-induced radical of donor-acceptor organic semiconductors. J. Phys. Chem. Lett. 12(40), 9783–9790 (2021).

    [60] B. Tang, W.L. Li, Y. Chang, B. Yuan, Y. Wu et al., A supramolecular radical dimer: High-efficiency NIR-II photothermal conversion and therapy. Angew. Chem. Int. Ed. 58(43), 15526–15531 (2019).

    [61] B. Lu, Y. Chen, P. Li, B. Wang, K. Mullen et al., Stable radical anions generated from a porous perylenediimide metal-organic framework for boosting near-infrared photothermal conversion. Nat. Commun. 10(1), 767 (2019).

    [62] Z. Mi, P. Yang, R. Wang, J. Unruangsri, W. Yang et al., Stable radical cation-containing covalent organic frameworks exhibiting remarkable structure-enhanced photothermal conversion. J. Am. Chem. Soc. 141(36), 14433–14442 (2019).

    [63] G. Chen, J. Sun, Q. Peng, Q. Sun, G. Wang et al., Biradical-featured stable organic-small-molecule photothermal materials for highly efficient solar-driven water evaporation. Adv. Mater. 32(29), e1908537 (2020).

    [64] X. Cui, G. Lu, S. Dong, S. Li, Y. Xiao et al., Stable π-radical nanoparticles as versatile photosensitizers for effective hypoxia-overcoming photodynamic therapy. Mater. Horiz. 8(2), 571–576 (2021).

    [65] X. Cui, Z. Zhang, Y. Yang, S. Li, C.-S. Lee, Organic radical materials in biomedical applications: state of the art and perspectives. Exploration 2(2), 20210264 (2022).

    Yijian Gao, Ying Liu, Xiliang Li, Hui Wang, Yuliang Yang, Yu Luo, Yingpeng Wan, Chun-sing Lee, Shengliang Li, Xiao-Hong Zhang. A Stable Open-Shell Conjugated Diradical Polymer with Ultra-High Photothermal Conversion Efficiency for NIR-II Photo-Immunotherapy of Metastatic Tumor[J]. Nano-Micro Letters, 2024, 16(1): 021
    Download Citation