• Nano-Micro Letters
  • Vol. 16, Issue 1, 126 (2024)
Qun Jin1,*, Tianxiao Guo2, Nicolás Pérez1, Nianjun Yang2..., Xin Jiang2, Kornelius Nielsch1,3,4,** and Heiko Reith1,***|Show fewer author(s)
Author Affiliations
  • 1Institute for Metallic Materials, Leibniz Institute for Solid State and Materials Research, 01069 Dresden, Germany
  • 2Institute of Materials Engineering, University of Siegen, 57076 Siegen, Germany
  • 3Institute of Applied Physics, Technical University of Dresden, 01069 Dresden, Germany
  • 4Institute of Materials Science, Technical University of Dresden, 01069 Dresden, Germany
  • show less
    DOI: 10.1007/s40820-024-01342-3 Cite this Article
    Qun Jin, Tianxiao Guo, Nicolás Pérez, Nianjun Yang, Xin Jiang, Kornelius Nielsch, Heiko Reith. On-Chip Micro Temperature Controllers Based on Freestanding Thermoelectric Nano Films for Low-Power Electronics[J]. Nano-Micro Letters, 2024, 16(1): 126 Copy Citation Text show less
    References

    [1] A.L. Moore, L. Shi, Emerging challenges and materials for thermal management of electronics. Mater. Today 17(4), 163–174 (2014).

    [2] L.T. Yeh, Review of heat transfer technologies in electronic equipment. J. Electron. Packag. 117, 333–339 (1995).

    [3] K.A. Bannister, G. Giorgetti, S. Gupta, Wireless sensor networking for “Hot” applications: effects of temperature on signal strength, data collection and localization. In Proceedings of the 5th workshop on embedded networked sensors (HotEmNets’ 08). (2008), pp. 1–5

    [4] A. Beccari, D.A. Visani, S.A. Fedorov, M.J. Bereyhi, V. Boureau et al., Strained crystalline nanomechanical resonators with quality factors above 10 billion. Nat. Phys. 18, 436–441 (2022).

    [5] X. Xu, Q. Wang, J. Tian, L. Yang, Y. Fang et al., On the air buoyancy effect in MEMS-based gravity sensors for high resolution gravity measurements. IEEE Sens. J. 21, 22480–22488 (2021).

    [6] R.P. Middlemiss, A. Samarelli, D.J. Paul, J. Hough, S. Rowan et al., Measurement of the earth tides with a MEMS gravimeter. Nature 531, 614–617 (2016).

    [7] V. Lakshminarayanan, N. Sriraam, The effect of temperature on the reliability of electronic components. 2014 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), (IEEE, Bangalore, India, 2014), pp. 1–6

    [8] L.T. Yeh, R.C. Chu, W.S. Janna, Thermal management of microelectronic equipment: heat transfer theory, analysis methods, and design practices. ASME press book series on electronic packaging. Appl. Mech. Rev. 56, B46–B48 (2003).

    [9] C.T.C. Nguyen, MEMS technology for timing and frequency control. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 54, 251–270 (2007).

    [10] L. Comenencia Ortiz, H.K. Kwon, J. Rodriguez, Y. Chen, G.D. Vukasin et al., Low-power dual mode MEMS resonators with PPB stability over temperature. J. Microelectromech. Syst. 29, 190–201 (2020).

    [11] M. Corato-Zanarella, A. Gil-Molina, X. Ji, M.C. Shin, A. Mohanty et al., Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths. Nat. Photonics 17, 157–164 (2023).

    [12] G. Liang, H. Huang, A. Mohanty, M.C. Shin, X. Ji et al., Robust, efficient, micrometre-scale phase modulators at visible wavelengths. Nat. Photonics 15, 908–913 (2021).

    [13] W.T. Hsu, A.R. Brown, Frequency trimming for MEMS resonator oscillators. 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum, (IEEE, Geneva, Switzerland, 2007), pp. 1088–1091

    [14] J.C. Salvia, R. Melamud, S.A. Chandorkar, S.F. Lord, T.W. Kenny, Real-time temperature compensation of MEMS oscillators using an integrated micro-oven and a phase-locked loop. J. Microelectromech. Syst. 19, 192–201 (2010).

    [15] C.A. Boano, K. Römer, N. Tsiftes, Mitigating the adverse effects of temperature on low-power wireless protocols. 2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems, (IEEE, Philadelphia, PA, USA, 2014), pp. 336–344

    [16] S. Olenik, H.S. Lee, F. Güder, The future of near-field communication-based wireless sensing. Nat. Rev. Mater. 6, 286–288 (2021).

    [17] E. Baptista, K. Buisman, J.C. Vaz, C. Fager, Analysis of thermal coupling effects in integrated MIMO transmitters. 2017 IEEE MTT-S International Microwave Symposium (IMS), (IEEE, Honololu, HI, USA, 2017), pp. 75–78

    [18] X. Lu, P. Wang, D. Niyato, D.I. Kim, Z. Han, Wireless charging technologies: fundamentals, standards, and network applications. IEEE Commun. Surv. Tutor. 18, 1413–1452 (2016).

    [19] L. Portilla, K. Loganathan, H. Faber, A. Eid, J.G.D. Hester et al., Wirelessly powered large-area electronics for the Internet of Things. Nat. Electron. 6, 10–17 (2023).

    [20] W. Arden, M. Brillouët, P. Cogez, M. Graef, B. Huizing et al., More-than-Moore white paper. (International Roadmap for Semiconductors, 2010). http://www.itrs2.net/uploads/4/9/7/7/49775221/irc-itrs-mtm-v2_3.pdf

    [21] Y. Zhang, F. Udrea, H. Wang, Multidimensional device architectures for efficient power electronics. Nat. Electron. 5, 723–734 (2022).

    [22] S. Datta, W. Chakraborty, M. Radosavljevic, Toward attojoule switching energy in logic transistors. Science 378, 733–740 (2022).

    [23] R. Mahajan, C.-P. Chiu, G. Chrysler, Cooling a microprocessor chip. Proc. IEEE 94, 1476–1486 (2006).

    [24] Z. He, Y. Yan, Z. Zhang, Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: a review. Energy 216, 119223 (2021).

    [25] Y. Li, W. Li, T. Han, X. Zheng, J. Li et al., Transforming heat transfer with thermal metamaterials and devices. Nat. Rev. Mater. 6, 488–507 (2021).

    [26] F. Tian, B. Song, X. Chen, N.K. Ravichandran, Y. Lv et al., Unusual high thermal conductivity in boron arsenide bulk crystals. Science 361, 582–585 (2018).

    [27] K.M. Razeeb, E. Dalton, G.L.W. Cross, A.J. Robinson, Present and future thermal interface materials for electronic devices. Int. Mater. Rev. 63, 1–21 (2018).

    [28] R. van Erp, R. Soleimanzadeh, L. Nela, G. Kampitsis, E. Matioli, Co-designing electronics with microfluidics for more sustainable cooling. Nature 585, 211–216 (2020).

    [29] H. Hou, S. Qian, I. Takeuchi, Materials, physics and systems for multicaloric cooling. Nat. Rev. Mater. 7, 633–652 (2022).

    [30] L.L. Baranowski, G. Jeffrey Snyder, E.S. Toberer, Effective thermal conductivity in thermoelectric materials. J. Appl. Phys. 113, 204904 (2013).

    [31] W.Y. Chen, X.L. Shi, J. Zou, Z.G. Chen, Thermoelectric coolers for on-chip thermal management: materials, design, and optimization. Mater. Sci. Eng. R. Rep. 151, 100700 (2022).

    [32] G. Li, J. Garcia Fernandez, D.A. Lara Ramos, V. Barati, N. Pérez et al., Integrated microthermoelectric coolers with rapid response time and high device reliability. Nat. Electron. 1, 555–561 (2018).

    [33] H. Bottner, Micropelt miniaturized thermoelectric devices: small size, high cooling power densities, short response time. ICT 2005.24th International Conference on Thermoelectrics, (IEEE, Clemson, SC, USA, 2005), pp. 1–8

    [34] Q. Zhang, K. Deng, L. Wilkens, H. Reith, K. Nielsch, Micro-thermoelectric devices. Nat. Electron. 5, 333–347 (2022).

    [35] Y. Su, J. Lu, D. Villaroman, D. Li, B. Huang, Free-standing planar thermoelectric microrefrigerators based on nano-grained SiGe thin films for on-chip refrigeration. Nano Energy 48, 202–210 (2018).

    [36] Q. Jin, Y. Zhao, X. Long, S. Jiang, C. Qian et al., Flexible carbon nanotube-epitaxially grown nanocrystals for micro-thermoelectric modules. Adv. Mater. 35, 2304751 (2023).

    [37] Q. Zhu, S. Wang, X. Wang, A. Suwardi, M.H. Chua et al., Bottom-up engineering strategies for high-performance thermoelectric materials. Nano-Micro Lett. 13, 119 (2021).

    [38] D.M. Rowe, CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, FL, 1995)

    [39] L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008).

    [40] G.J. Snyder, J.R. Lim, C.K. Huang, J.P. Fleurial, Thermoelectric microdevice fabricated by a MEMS-like electrochemical process. Nat. Mater. 2, 528–531 (2003).

    [41] G. Bulman, P. Barletta, J. Lewis, N. Baldasaro, M. Manno et al., Superlattice-based thin-film thermoelectric modules with high cooling fluxes. Nat. Commun. 7, 10302 (2016).

    [42] Y. Chen, X. Nie, C. Sun, S. Ke, W. Xu et al., Realizing high-performance BiSbTe magnetic flexible films via acceleration movement and hopping migration of carriers. Adv. Funct. Mater. 32, 2111373 (2022).

    [43] J. Mao, G. Chen, Z. Ren, Thermoelectric cooling materials. Nat. Mater. 20, 454–461 (2021).

    [44] A. Gross, G. Hwang, B. Huang, H. Yang, N. Ghafouri, et al., High-performance micro scale thermoelectric cooler: an optimized 6-stage cooler. TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference, (IEEE, Denver, CO, USA, 2009), pp. 2413–2416

    [45] R.N. Candler, W.-T. Park, H. Li, G. Yama, A. Partridge et al., Single wafer encapsulation of MEMS devices. IEEE Trans. Adv. Packag. 26, 227–232 (2003).

    [46] G.S. Nolas, J. Sharp, H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Springer, Berlin, Heidelberg, 2001)

    [47] L. Yin, F. Yang, X. Bao, W. Xue, Z. Du et al., Low-temperature sintering of Ag nanoparticles for high-performance thermoelectric module design. Nat. Energy 8, 665–674 (2023).

    [48] F. Kim, S.E. Yang, H. Ju, S. Choo, J. Lee et al., Direct ink writing of three-dimensional thermoelectric microarchitectures. Nat. Electron. 4, 579–587 (2021).

    [49] E. Younes, J. Christofferson, K. Maize, A. Shakouri, Short time transient behavior of SiGe-based microrefrigerators. MRS Online Proc. Libr. 1166, 106 (2009).

    [50] H. Bottner, J. Nurnus, A. Gavrikov, G. Kuhner, M. Jagle et al., New thermoelectric components using microsystem technologies. J. Microelectromech. Syst. 13, 414–420 (2004).

    [51] V.A. Semeniouk, T.V. Pilipenko, Thermoelectric coolers with small response time. Fifteenth International Conference on Thermoelectrics. Proceedings ICT ’96, (IEEE, Pasadena, CA, USA, 2002), pp. 301–306

    [52] Q. Jin, S. Jiang, Y. Zhao, D. Wang, J. Qiu et al., Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold. Nat. Mater. 18, 62–68 (2019).

    [53] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001).

    [54] J. Mao, H. Zhu, Z. Ding, Z. Liu, G.A. Gamage et al., High thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science 365, 495–498 (2019).

    [55] Z. Liu, W. Gao, H. Oshima, K. Nagase, C.H. Lee et al., Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling. Nat. Commun. 13, 1120 (2022).

    Qun Jin, Tianxiao Guo, Nicolás Pérez, Nianjun Yang, Xin Jiang, Kornelius Nielsch, Heiko Reith. On-Chip Micro Temperature Controllers Based on Freestanding Thermoelectric Nano Films for Low-Power Electronics[J]. Nano-Micro Letters, 2024, 16(1): 126
    Download Citation