• Photonics Research
  • Vol. 12, Issue 11, 2435 (2024)
Zhen Meng1, Dongqing Liu1,4, Jiafu Wang2, Yongqiang Pang3..., Tianwen Liu1, Yan Jia1, Boheng Gui1 and Haifeng Cheng1,*|Show fewer author(s)
Author Affiliations
  • 1Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
  • 2Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices, Air Force Engineering University, Xi’an 710051, China
  • 3Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, China
  • 4e-mail: liudongqing07@nudt.edu.cn
  • show less
    DOI: 10.1364/PRJ.527945 Cite this Article Set citation alerts
    Zhen Meng, Dongqing Liu, Jiafu Wang, Yongqiang Pang, Tianwen Liu, Yan Jia, Boheng Gui, Haifeng Cheng, "Metamaterial-inspired infrared electrochromic devices with wideband microwave absorption for multispectral camouflage," Photonics Res. 12, 2435 (2024) Copy Citation Text show less
    References

    [1] C. Xu, G. T. Stiubianu, A. A. Gorodetsky. Adaptive infrared-reflecting systems inspired by cephalopods. Science, 359, 1495-1500(2018).

    [2] A. C. Ferrari. Chameleon graphene surfaces. Nat. Photonics, 15, 488-490(2021).

    [3] M. Li, D. Liu, H. Cheng. Manipulating metals for adaptive thermal camouflage. Sci. Adv., 6, eaba3494(2020).

    [4] O. Salihoglu, H. B. Uzlu, O. Yakar. Graphene-based adaptive thermal camouflage. Nano Lett., 18, 4541-4548(2018).

    [5] J. Yang, X. Zhang, X. Zhang. Beyond the visible: bioinspired infrared adaptive materials. Adv. Mater., 33, e2004754(2021).

    [6] S. A. Morin, R. F. Shepherd, S. W. Kwok. Camouflage and display for soft machines. Science, 337, 828-832(2012).

    [7] S. Hong, Y. Gu, J. K. Seo. Wearable thermoelectrics for personalized thermoregulation. Sci. Adv., 5, eaaw0536(2019).

    [8] S. Hong, S. Shin, R. Chen. An adaptive and wearable thermal camouflage device. Adv. Funct. Mater., 30, 1909788(2020).

    [9] K. Tang, K. Dong, J. Li. Temperature-adaptive radiative coating for all-season household thermal regulation. Science, 374, 1504-1509(2021).

    [10] S. A. Dereshgi, M. C. Larciprete, M. Centini. Tuning of optical phonons in α-MoO3–VO2 multilayers. ACS Appl. Mater. Interfaces, 13, 48981-48987(2021).

    [11] M. C. Larciprete, M. Centini, S. Paoloni. Adaptive tuning of infrared emission using VO2 thin films. Sci. Rep., 10, 11544(2020).

    [12] K.-K. Du, Q. Li, Y.-B. Lyu. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST. Light Sci. Appl., 6, e16194(2017).

    [13] Y. Qu, Q. Li, L. Cai. Thermal camouflage based on the phase-changing material GST. Light Sci. Appl., 7, 26(2018).

    [14] M. S. Ergoktas, G. Bakan, E. Kovalska. Multispectral graphene-based electro-optical surfaces with reversible tunability from visible to microwave wavelengths. Nat. Photonics, 15, 493-498(2021).

    [15] Y. Jia, D. Liu, D. Chen. Transparent dynamic infrared emissivity regulators. Nat. Commun., 14, 5087(2023).

    [16] X. Tao, D. Liu, T. Liu. A bistable variable infrared emissivity device based on reversible silver electrodeposition. Adv. Funct. Mater., 32, 2202661(2022).

    [17] K. Sauvet, L. Sauques, A. Rougier. IR electrochromic WO3 thin films: from optimization to devices. Sol. Energy Mater. Sol. Cells, 93, 2045-2049(2009).

    [18] J. Mandal, S. Du, M. Dontigny. Li4Ti5O12: a visible-to-infrared broadband electrochromic material for optical and thermal management. Adv. Funct. Mater., 28, 1802180(2018).

    [19] R. Brooke, E. Mitraka, S. Sardar. Infrared electrochromic conducting polymer devices. J. Mater. Chem. C, 5, 5824-5830(2017).

    [20] Y. Tian, X. Zhang, S. Dou. A comprehensive study of electrochromic device with variable infrared emissivity based on polyaniline conducting polymer. Sol. Energy Mater. Sol. Cells, 170, 120-126(2017).

    [21] Y. Sun, H. Chang, J. Hu. Large-scale multifunctional carbon nanotube thin film as effective mid-infrared radiation modulator with long-term stability. Adv. Opt. Mater., 9, 2001216(2021).

    [22] C. Sui, J. Pu, T.-H. Chen. Dynamic electrochromism for all-season radiative thermoregulation. Nat. Sustainability, 6, 428-437(2023).

    [23] Y. Wu, S. Tan, Y. Zhao. Broadband multispectral compatible absorbers for radar, infrared and visible stealth application. Prog. Mater Sci., 135, 101088(2023).

    [24] H. Zhu, Q. Li, C. Tao. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nat. Commun., 12, 1805(2021).

    [25] J. Nam, I. Chang, J.-S. Lim. Flexible metasurface for microwave-infrared compatible camouflage via particle swarm optimization algorithm. Small, 19, 2302848(2023).

    [26] N. Lee, J.-S. Lim, I. Chang. Flexible assembled metamaterials for infrared and microwave camouflage. Adv. Opt. Mater., 10, 2200448(2022).

    [27] Q. Chang, J. Ji, W. Wu. An optically transparent metamaterial absorber with tunable absorption bandwidth and low infrared emissivity. Materials, 16, 7357(2023).

    [28] C. Huang, B. Zhao, J. Song. Active transmission/absorption frequency selective surface with dynamical modulation of amplitude. IEEE Trans. Antennas Propag., 69, 3593-3598(2021).

    [29] Z. Yao, S. Xiao, Y. Li. Wide-angle, ultra-wideband, polarization-independent circuit analog absorbers. IEEE Trans. Antennas Propag., 70, 7276-7281(2022).

    [30] R. A. Maniyara, D. Rodrigo, R. Yu. Tunable plasmons in ultrathin metal films. Nat. Photonics, 13, 328-333(2019).

    [31] L. Zhou, Y. Tan, D. Ji. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv., 2, e1501227(2016).

    [32] F. Ding, J. Dai, Y. Chen. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals. Sci. Rep., 6, 39445(2016).

    [33] L. Peng, D. Liu, H. Cheng. Design and fabrication of the ultrathin metallic film based infrared selective radiator. Sol. Energy Mater. Sol. Cells, 193, 7-12(2019).

    [34] A. P. Alivisatos. Semiconductor clusters, nanocrystals, and quantum dots. Science, 271, 933-937(1996).

    [35] C. Qian, B. Zheng, Y. Shen. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat. Photonics, 14, 383-390(2020).

    [36] R. Zhu, J. Wang, S. Sui. Chameleon-like intelligent camouflage metasurface. Mater. Des., 235, 112422(2023).

    [37] T. Kim, J.-Y. Bae, N. Lee. Hierarchical metamaterials for multispectral camouflage of infrared and microwaves. Adv. Funct. Mater., 29, 1807319(2019).

    [38] X. Feng, M. Pu, F. Zhang. Large-area low-cost multiscale-hierarchical metasurfaces for multispectral compatible camouflage of dual-band lasers, infrared and microwave. Adv. Funct. Mater., 32, 2205547(2022).

    [39] Y. Cui, J. Wang, H. Sun. Visible transparent wideband microwave meta-absorber with designable digital infrared camouflage. Adv. Opt. Mater., 12, 2301712(2024).

    Zhen Meng, Dongqing Liu, Jiafu Wang, Yongqiang Pang, Tianwen Liu, Yan Jia, Boheng Gui, Haifeng Cheng, "Metamaterial-inspired infrared electrochromic devices with wideband microwave absorption for multispectral camouflage," Photonics Res. 12, 2435 (2024)
    Download Citation