• Frontiers of Optoelectronics
  • Vol. 13, Issue 2, 129 (2020)
Yuhan YAO, Zhao CHENG, Jianji DONG*, and Xinliang ZHANG
Author Affiliations
  • Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.1007/s12200-020-1058-3 Cite this Article
    Yuhan YAO, Zhao CHENG, Jianji DONG, Xinliang ZHANG. Performance of integrated optical switches based on 2D materials and beyond[J]. Frontiers of Optoelectronics, 2020, 13(2): 129 Copy Citation Text show less
    References

    [1] Cheng Q, Bahadori M, Glick M, Rumley S, Bergman K. Recent advances in optical technologies for data centers: a review. Optica, 2018, 5(11): 1354

    [2] Cheng Q, Rumley S, Bahadori M, Bergman K. Photonic switching in high performance datacenters. Optics Express, 2018, 26(12): 16022–16043

    [3] Geis M W, Spector S J, Williamson R C, Lyszczarz T M. Submicrosecond submilliwatt silicon-on-insulator thermooptic switch. IEEE Photonics Technology Letters, 2004, 16(11): 2514– 2516

    [4] Dong P, Qian W, Liang H, Shafiiha R, Feng D, Li G, Cunningham J E, Krishnamoorthy A V, Asghari M. Thermally tunable silicon racetrack resonators with ultralow tuning power. Optics Express, 2010, 18(19): 20298–20304

    [5] Lee B S, Zhang M, Barbosa F A S, Miller S A, Mohanty A, St- Gelais R, Lipson M. On-chip thermo-optic tuning of suspended microresonators. Optics Express, 2017, 25(11): 12109–12120

    [6] Li X, Xu H, Xiao X, Li Z, Yu Y, Yu J. Fast and efficient silicon thermo-optic switching based on reverse breakdown of pn junction. Optics Letters, 2014, 39(4): 751–753

    [7] Zhao Y, Wang X, Gao D, Dong J, Zhang X. On-chip programmable pulse processor employing cascaded MZI-MRR structure. Frontiers of Optoelectronics, 2019, 12(2): 148–156

    [8] Xu Q, Manipatruni S, Schmidt B, Shakya J, Lipson M. 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Optics Express, 2007, 15(2): 430–436

    [9] anipatruni S, Dokania R K, Schmidt B, Sherwood-Droz N, Poitras C B, Apsel A B, Lipson M. Wide temperature range operation of micrometer-scale silicon electro-optic modulators. Optics Letters, 2008, 33(19): 2185–2187

    [10] Timurdogan E, Sorace-Agaskar C M, Sun J, Shah Hosseini E, Biberman A, Watts M R. An ultralow power athermal silicon modulator. Nature Communications, 2014, 5(1): 4008

    [11] Ferrari A C, Bonaccorso F, Fal’ko V, Novoselov K S, Roche S, B?ggild P, Borini S, Koppens F H, Palermo V, Pugno N, Garrido J A, Sordan R, Bianco A, Ballerini L, Prato M, Lidorikis E, Kivioja J, Marinelli C, Ryh?nen T, Morpurgo A, Coleman J N, Nicolosi V, Colombo L, Fert A, Garcia-Hernandez M, Bachtold A, Schneider G F, Guinea F, Dekker C, Barbone M, Sun Z, Galiotis C, Grigorenko A N, Konstantatos G, Kis A, Katsnelson M, Vandersypen L, Loiseau A, Morandi V, Neumaier D, Treossi E, Pellegrini V, Polini M, Tredicucci A, Williams G M, Hong B H, Ahn J H, Kim J M, Zirath H, van Wees B J, van der Zant H, Occhipinti L, Di Matteo A, Kinloch I A, Seyller T, Quesnel E, Feng X, Teo K, Rupesinghe N, Hakonen P, Neil S R, Tannock Q, L?fwander T, Kinaret J. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7(11): 4598–4810

    [12] Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A. Twodimensional material nanophotonics. Nature Photonics, 2014, 8(12): 899–907

    [13] Sun Z, Martinez A, Wang F. Optical modulators with 2D layered materials. Nature Photonics, 2016, 10(4): 227–238

    [14] Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W, Leuthold J. All-optical high-speed signal processing with silicon– organic hybrid slot waveguides. Nature Photonics, 2009, 3(4): 216– 219

    [15] Melikyan A, Alloatti L, Muslija A, Hillerkuss D, Schindler P C, Li J, Palmer R, Korn D, Muehlbrandt S, Van Thourhout D, Chen B, Dinu R, Sommer M, Koos C, Kohl M, Freude W, Leuthold J. High-speed plasmonic phase modulators. Nature Photonics, 2014, 8(3): 229– 233

    [16] Mueller T, Xia F, Avouris P. Graphene photodetectors for highspeed optical communications. Nature Photonics, 2010, 4(5): 297– 301

    [17] Youngblood N, Chen C, Koester S J, Li M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nature Photonics, 2015, 9(4): 247–252

    [18] Datta I, Chae S H, Bhatt G R, Tadayon M A, Li B, Yu Y, Park C, Park J, Cao L, Basov D N, Hone J, Lipson M. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nature Photonics, 2020, 14(4): 256–262

    [19] Wu S, Buckley S, Schaibley J R, Feng L, Yan J, Mandrus D G, Hatami F, Yao W, Vu?kovi? J, Majumdar A, Xu X. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature, 2015, 520(7545): 69–72

    [20] Ye Y, Wong Z J, Lu X, Ni X, Zhu H, Chen X, Wang Y, Zhang X. Monolayer excitonic laser. Nature Photonics, 2015, 9(11): 733–737

    [21] Yao Y, Xia X, Cheng Z, Wei K, Jiang X, Dong J, Zhang H. Alloptical modulator using MXene inkjet-printed microring resonator. IEEE Journal of Selected Topics in Quantum Electronics, 2020, doi:10.1109/JSTQE.2020.2982985

    [22] Youngblood N, Li M. Integration of 2D materials on a silicon photonics platform for optoelectronics applications. Nanophotonics, 2016, 6(6): 1205–1218

    [23] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008, 146(9–10): 351–355

    [24] Mas-Ballesté R, Gómez-Navarro C, Gómez-Herrero J, Zamora F. 2D materials: to graphene and beyond. Nanoscale, 2011, 3(1): 20– 30

    [25] Kang K, Xie S, Huang L, Han Y, Huang P Y, Mak K F, Kim C J, Muller D, Park J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature, 2015, 520(7549): 656– 660

    [26] Tran V, Soklaski R, Liang Y, Yang L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Physical Review B, 2014, 89(23): 235319

    [27] Qiao J, Kong X, Hu Z X, Yang F, Ji W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Communications, 2014, 5(1): 4475

    [28] Autere A, Jussila H, Dai Y, Wang Y, Lipsanen H, Sun Z. Nonlinear optics with 2D layered materials. Advanced Materials, 2018, 30 (24): 1705963

    [29] Li Y, Zhang J, Huang D, Sun H, Fan F, Feng J, Wang Z, Ning C Z. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nature Nanotechnology, 2017, 12(10): 987–992

    [30] Mak K F, Lee C, Hone J, Shan J, Heinz T F. Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters, 2010, 105 (13): 136805

    [31] Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW. Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2. Advanced Materials, 2011, 23(37): 4248–4253

    [32] Hendry E, Hale P J, Moger J, Savchenko A K, Mikhailov S A. Coherent nonlinear optical response of graphene. Physical Review Letters, 2010, 105(9): 097401

    [33] Zhang H, Virally S, Bao Q, Ping L K, Massar S, Godbout N, Kockaert P. Z-scan measurement of the nonlinear refractive index of graphene. Optics Letters, 2012, 37(11): 1856–1858

    [34] Jiang X, Liu S, Liang W, Luo S, He Z, Ge Y,Wang H, Cao R, Zhang F, Wen Q, Li J, Bao Q, Fan D, Zhang H. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser & Photonics Reviews, 2018, 12(2): 1700229

    [35] Jiang B, Hao Z, Ji Y, Hou Y, Yi R, Mao D, Gan X, Zhao J. Highefficiency second-order nonlinear processes in an optical microfibre assisted by few-layer GaSe. Light, Science & Applications, 2020, 9 (1): 63

    [36] Gu T, Petrone N, McMillan J F, van der Zande A, Yu M, Lo G Q, Kwong D L, Hone J, Wong C W. Regenerative oscillation and fourwave mixing in graphene optoelectronics. Nature Photonics, 2012, 6 (8): 554–559

    [37] Li J, Liu C, Chen H, Guo J, Zhang M, Dai D. Hybrid silicon photonic devices with two-dimensional materials. Nanophotonics, 2020, doi:10.1515/nanoph-2020-0093

    [38] Miller D. Device requirements for optical interconnects to silicon chips. Proceedings of the IEEE, 2009, 97(7): 1166–1185

    [39] Lu L, Zhao S, Zhou L, Li D, Li Z, Wang M, Li X, Chen J. 16  16 non-blocking silicon optical switch based on electro-optic Mach- Zehnder interferometers. Optics Express, 2016, 24(9): 9295–9307

    [40] Jia H, Xia Y, Zhang L, Ding J, Fu X, Yang L. Four-port optical switch for fat-tree photonic network-on-chip. Journal of Lightwave Technology, 2017, 35(15): 3237–3241

    [41] Lee B G, Dupuis N. Silicon photonic switch fabrics: technology and architecture. Journal of Lightwave Technology, 2019, 37(1): 6–20

    [42] Jia H, Zhou T, Zhao Y, Xia Y, Dai J, Zhang L, Ding J, Fu X, Yang L. Six-port optical switch for cluster-mesh photonic network-on-chip. Nanophotonics, 2018, 7(5): 827–835

    [43] Zheng D, Doménech J D, Pan W, Zou X, Yan L, Pérez D. Low-loss broadband 5  5 non-blocking Si3N4 optical switch matrix. Optics Letters, 2019, 44(11): 2629

    [44] Li Z, Zhou L, Lu L, Zhao S, Li D, Chen J. 4  4 nonblocking optical switch fabric based on cascaded multimode interferometers. Photonics Research, 2016, 4(1): 21

    [45] Seok T J, Quack N, Han S, Muller R S, Wu M C. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica, 2016, 3(1): 64

    [46] Han S, Seok T J, Quack N, Yoo B W, Wu M C. Large-scale silicon photonic switches with movable directional couplers. Optica, 2015, 2(4): 370

    [47] Sun J, Timurdogan E, Yaacobi A, Hosseini E S, Watts M R. Largescale nanophotonic phased array. Nature, 2013, 493(7431): 195–199

    [48] Yang L, Zhou T, Jia H, Yang S, Ding J, Fu X, Zhang L. General architectures for on-chip optical space and mode switching. Optica, 2018, 5(2): 180

    [49] Xiong Y, Priti R B, Liboiron-Ladouceur O. High-speed two-mode switch for mode-division multiplexing optical networks. Optica, 2017, 4(9): 1098

    [50] Jia H, Zhou T, Zhang L, Ding J, Fu X, Yang L. Optical switch compatible with wavelength division multiplexing and mode division multiplexing for photonic networks-on-chip. Optics Express, 2017, 25(17): 20698–20707

    [51] Zhou T, Jia H, Ding J, Zhang L, Fu X, Yang L. On-chip broadband silicon thermo-optic 22 four-mode optical switch for optical space and local mode switching. Optics Express, 2018, 26(7): 8375–8384

    [52] Koeber S, Palmer R, Lauermann M, Heni W, Elder D L, Korn D, Woessner M, Alloatti L, Koenig S, Schindler P C, Yu H, Bogaerts W, Dalton L R, Freude W, Leuthold J, Koos C. Femtojoule electrooptic modulation using a silicon–organic hybrid device. Light, Science & Applications, 2015, 4(2): e255

    [53] Nozaki K, Tanabe T, Shinya A, Matsuo S, Sato T, Taniyama H, Notomi M. Sub-femtojoule all-optical switching using a photoniccrystal nanocavity. Nature Photonics, 2010, 4(7): 477–483

    [54] Nozaki K, Shinya A, Matsuo S, Suzaki Y, Segawa T, Sato T, Kawaguchi Y, Takahashi R, Notomi M. Ultralow-power all-optical RAM based on nanocavities. Nature Photonics, 2012, 6(4): 248–252

    [55] Ono M, Hata M, Tsunekawa M, Nozaki K, Sumikura H, Chiba H, Notomi M. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nature Photonics, 2020, 14(1): 37–43

    [56] Hu X, Jiang P, Ding C, Yang H, Gong Q. Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nature Photonics, 2008, 2(3): 185–189

    [57] Klein M, Badada B H, Binder R, Alfrey A, McKie M, Koehler MR, Mandrus D G, Taniguchi T,Watanabe K, LeRoy B J, Schaibley J R. 2D semiconductor nonlinear plasmonic modulators. Nature Communications, 2019, 10(1): 3264

    [58] Wang H, Yang N, Chang L, Zhou C, Li S, Deng M, Li Z, Liu Q, Zhang C, Li Z, Wang Y. CMOS-compatible all-optical modulator based on the saturable absorption of graphene. Photonics Research, 2020, 8(4): 468

    [59] Chen B, Wu H, Xin C, Dai D, Tong L. Flexible integration of freestanding nanowires into silicon photonics. Nature Communications, 2017, 8(1): 20

    [60] Yang S, Liu D C, Tan Z L, Liu K, Zhu Z H, Qin S Q. CMOScompatible WS2-based all-optical modulator. ACS Photonics, 2018, 5(2): 342–346

    [61] Yan S, Zhu X, Frandsen L H, Xiao S, Mortensen N A, Dong J, Ding Y. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides. Nature Communications, 2017, 8(1): 14411

    [62] Song Q Q, Chen K X, Hu Z F. Low-power broadband thermo-optic switch with weak polarization dependence using a segmented graphene heater. Journal of Lightwave Technology, 2020, 38(6): 1358–1364

    [63] Liu Y, Wang H, Wang S, Wang Y, Wang Y, Guo Z, Xiao S, Yao Y, Song Q, Zhang H, Xu K. Highly efficient silicon photonic microheater based on black arsenic–phosphorus. Advanced Optical Materials, 2020, 8(6): 1901526

    [64] Cheng Z, Cao R, Guo J, Yao Y, Wei K, Gao S, Wang Y, Dong J, Zhang H. Phosphorene-assisted silicon photonic modulator with fast response time. Nanophotonics, 2020, doi:10.1515/nanoph-2019- 0510

    [65] Yu L, Yin Y, Shi Y, Dai D, He S. Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters. Optica, 2016, 3(2): 159

    [66] Yu L, Dai D, He S. Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices. Applied Physics Letters, 2014, 105(25): 251104

    [67] Qiu C, Yang Y, Li C, Wang Y, Wu K, Chen J. All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect. Scientific Reports, 2017, 7(1): 17046

    [68] Gan S, Cheng C, Zhan Y, Huang B, Gan X, Li S, Lin S, Li X, Zhao J, Chen H, Bao Q. A highly efficient thermo-optic microring modulator assisted by graphene. Nanoscale, 2015, 7(47): 20249– 20255

    [69] Xu Z, Qiu C, Yang Y, Zhu Q, Jiang X, Zhang Y, Gao W, Su Y. Ultra-compact tunable silicon nanobeam cavity with an energyefficient graphene micro-heater. Optics Express, 2017, 25(16): 19479–19486

    [70] Haffner C, Heni W, Fedoryshyn Y, Niegemann J, Melikyan A, Elder D L, Baeuerle B, Salamin Y, Josten A, Koch U, Hoessbacher C, Ducry F, Juchli L, Emboras A, Hillerkuss D, Kohl M, Dalton L R, Hafner C, Leuthold J. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nature Photonics, 2015, 9(8): 525–528

    [71] Cheng Z, Zhu X, Galili M, Frandsen L H, Hu H, Xiao S, Dong J, Ding Y, Oxenl?we L K, Zhang X. Double-layer graphene on photonic crystal waveguide electro-absorption modulator with 12 GHz bandwidth. Nanophotonics, 2019, doi:10.1515/nanoph-2019- 0381

    [72] Gan X, Shiue R J, Gao Y, Mak K F, Yao X, Li L, Szep A, Walker D Jr, Hone J, Heinz T F, Englund D. High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene. Nano Letters, 2013, 13(2): 691–696

    [73] Hu Y, Pantouvaki M, Van Campenhout J, Brems S, Asselberghs I, Huyghebaert C, Absil P, Van Thourhout D. Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon. Laser & Photonics Reviews, 2016, 10(2): 307–316

    [74] Phare C T, Daniel Lee Y H, Cardenas J, Lipson M. Graphene electro-optic modulator with 30 GHz bandwidth. Nature Photonics, 2015, 9(8): 511–514

    [75] Qiu C, Gao W, Vajtai R, Ajayan P M, Kono J, Xu Q. Efficient modulation of 1.55 mm radiation with gated graphene on a silicon microring resonator. Nano Letters, 2014, 14(12): 6811–6815

    [76] Liu M, Yin X, Zhang X. Double-layer graphene optical modulator. Nano Letters, 2012, 12(3): 1482–1485

    [77] Gao Y, Shiue R J, Gan X, Li L, Peng C, Meric I, Wang L, Szep A, Walker D Jr, Hone J, Englund D. High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity. Nano Letters, 2015, 15(3): 2001– 2005

    [78] Sorianello V, Midrio M, Contestabile G, Asselberghs I, Van Campenhout J, Huyghebaert C, Goykhman I, Ott A K, Ferrari A C, Romagnoli M. Graphene–silicon phase modulators with gigahertz bandwidth. Nature Photonics, 2018, 12(1): 40–44

    [79] Dalir H, Xia Y, Wang Y, Zhang X. Athermal broadband graphene optical modulator with 35 GHz speed. ACS Photonics, 2016, 3(9): 1564–1568

    [80] Alloatti L, Palmer R, Diebold S, Pahl K P, Chen B, Dinu R, Fournier M, Fedeli J M, Zwick T, Freude W, Koos C, Leuthold J. 100 GHz silicon–organic hybrid modulator. Light, Science & Applications, 2014, 3(5): e173

    [81] Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X. A graphene-based broadband optical modulator. Nature, 2011, 474(7349): 64–67

    [82] Miller D A B. Energy consumption in optical modulators for interconnects. Optics Express, 2012, 20(S2 Suppl 2): A293–A308

    [83] Qiao L, Tang W, Chu T. 32  32 silicon electro-optic switch with built-in monitors and balanced-status units. Scientific Reports, 2017, 7(1): 42306

    [84] Reed G T, Mashanovich G, Gardes F Y, Thomson D J. Silicon optical modulators. Nature Photonics, 2010, 4(8): 518–526

    [85] Yan S, Zhu X, Dong J, Ding Y, Xiao S. 2D materials integrated with metallic nanostructures: fundamentals and optoelectronic applications. Nanophotonics, 2020, doi:10.1515/nanoph-2020-0074

    [86] Ding Y, Guan X, Zhu X, Hu H, Bozhevolnyi S I, Oxenl?we L K, Jin K J, Mortensen N A, Xiao S. Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides. Nanoscale, 2017, 9 (40): 15576–15581

    [87] Ma P, Salamin Y, Baeuerle B, Josten A, Heni W, Emboras A, Leuthold J. Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size. ACS Photonics, 2019, 6(1): 154–161

    [88] Ding Y, Cheng Z, Zhu X, Yvind K, Dong J, Galili M, Hu H, Mortensen N A, Xiao S, Oxenl?we L K. Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz. Nanophotonics, 2020, 9(2): 317–325

    [89] Ansell D, Radko I P, Han Z, Rodriguez F J, Bozhevolnyi S I, Grigorenko A N. Hybrid graphene plasmonic waveguide modulators. Nature Communications, 2015, 6(1): 8846

    [90] Emboras A, Hoessbacher C, Haffner C, Heni W, Koch U, Ma P, Fedoryshyn Y, Niegemann J, Hafner C, Leuthold J. Electrically controlled plasmonic switches and modulators. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(4): 276–283

    [91] Srinivasan S A, Pantouvaki M, Gupta S, Chen H T, Verheyen P, Lepage G, Roelkens G, Saraswat K, Thourhout D V, Absil P, Campenhout J V. 56 Gb/s germanium waveguide electro-absorption modulator. Journal of Lightwave Technology, 2016, 34(2): 419–424

    [92] Chen L, Dong P, Lipson M. High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding. Optics Express, 2008, 16(15): 11513–11518

    [93] Liu J, Camacho-Aguilera R, Bessette J T, Sun X, Wang X, Cai Y, Kimerling L C, Michel J. Ge-on-Si optoelectronics. Thin Solid Films, 2012, 520(8): 3354–3360

    [94] Wang Z, Tian B, Pantouvaki M, Guo W, Absil P, Van Campenhout J, Merckling C, Van Thourhout D. Room-temperature InP distributed feedback laser array directly grown on silicon. Nature Photonics, 2015, 9(12): 837–842

    [95] Liu Y, Huang Y, Duan X. Van der Waals integration before and beyond two-dimensional materials. Nature, 2019, 567(7748): 323– 333

    [96] Bae S H, Kum H, Kong W, Kim Y, Choi C, Lee B, Lin P, Park Y, Kim J. Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nature Materials, 2019, 18 (6): 550–560

    [97] Stanford M G, Rack P D, Jariwala D. Emerging nanofabrication and quantum confinement techniques for 2D materials beyond graphene. npj 2D Materials and Applications, 2018, 2(1): 20

    [98] Sorger V J, Amin R, Khurgin J B, Ma Z, Dalir H, Khan S. Scaling vectors of attoJoule per bit modulators. Journal of Optics, 2018, 20 (1): 014012

    Yuhan YAO, Zhao CHENG, Jianji DONG, Xinliang ZHANG. Performance of integrated optical switches based on 2D materials and beyond[J]. Frontiers of Optoelectronics, 2020, 13(2): 129
    Download Citation