• Chinese Optics Letters
  • Vol. 21, Issue 11, 110010 (2023)
Yaoting Zhou1, Shaoxiong Wang1, Jiayi Chen1, Yifei Hu1..., Zhongxiao Xu1,2,* and Heng Shen1,2|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-electronics, Shanxi University, Taiyuan 030006, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • show less
    DOI: 10.3788/COL202321.110010 Cite this Article Set citation alerts
    Yaoting Zhou, Shaoxiong Wang, Jiayi Chen, Yifei Hu, Zhongxiao Xu, Heng Shen, "A universal algorithm for defect-free atomic array with arbitrary periodic geometries [Invited]," Chin. Opt. Lett. 21, 110010 (2023) Copy Citation Text show less
    References

    [1] A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T. Wang, S. Ebadi, H. Bernien, A. S. Zibrov, H. Pichler, S. Choi, J. Cui, M. Rossignolo, P. Rembold, S. Montangero, T. Calarco, M. Endres, M. Greiner, V. Vuletić, M. D. Lukin. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science, 365, 570(2019).

    [2] P. Kómár, T. Topcu, E. M. Kessler, A. Derevianko, V. Vuletić, J. Ye, M. D. Lukin. Quantum network of atom clocks: a possible implementation with neutral atoms. Phys. Rev. Lett., 117, 060506(2016).

    [3] T. M. Graham, Y. Song, J. Scott, C. Poole, L. Phuttitarn, K. Jooya, P. Eichler, X. Jiang, A. Marra, B. Grinkemeyer, M. Kwon, M. Ebert, J. Cherek, M. T. Lichtman, M. Gillette, J. Gilbert, D. Bowman, T. Ballance, C. Campbell, E. D. Dahl, O. Crawford, N. S. Blunt, B. Rogers, T. Noel, M. Saffman. Multi-qubit entanglement and algorithms on a neutral-atom quantum computer. Nature, 604, 457(2022).

    [4] D. Barredo, V. Lienhard, S. De Léséleuc, T. Lahaye, A. Browaeys. Synthetic three-dimensional atomic structures assembled atom by atom. Nature, 561, 79(2018).

    [5] Y. Liu, Z. Wang, P. Yang, Q. Wang, Q. Fan, S. Guan, G. Li, P. Zhang, T. Zhang. Realization of strong coupling between deterministic single-atom arrays and a high-finesse miniature optical cavity. Phys. Rev. Lett., 130, 173601(2023).

    [6] S. J. Evered, D. Bluvstein, M. Kalinowski, S. Ebadi, T. Manovitz, H. Zhou, S. H. Li, A. A. Geim, T. T. Wang, N. Maskara, H. Levine, G. Semeghini, M. Greiner, V. Vuletic, M. D. Lukin. High-fidelity parallel entangling gates on a neutral atom quantum computer(2023).

    [7] J. W. Lis, A. Senoo, W. F. McGrew, F. Rönchen, A. Jenkins, A. M. Kaufman. Mid-circuit operations using the omg-architecture in neutral atom arrays(2023).

    [8] S. Ebadi, T. T. Wang, H. Levine, A. Keesling, G. Semeghini, A. Omran, D. Bluvstein, R. Samajdar, H. Pichler, W. W. Ho, S. Choi, S. Sachdev, M. Greiner, V. Vuletić, M. D. Lukin. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature, 595, 227(2021).

    [9] A. W. Glaetzle, R. M. W. van Bijnen, P. Zoller, W. Lechner. A coherent quantum annealer with Rydberg atoms. Nat. Commun., 8, 15813(2017).

    [10] A. Browaeys, D. Barredo, T. Lahaye. Experimental investigations of dipole–dipole interactions between a few Rydberg atoms. J. Phys. B At. Mol. Opt. Phys., 49, 152001(2016).

    [11] S. Lloyd. Universal quantum simulators. Science, 273, 1073(1996).

    [12] I. M. Georgescu, S. Ashhab, F. Nori. Quantum simulation. Rev. Mod. Phys., 86, 153(2014).

    [13] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletic, M. D. Lukin. Probing many-body dynamics on a 51-atom quantum simulator. Nature, 551, 579(2017).

    [14] A. Browaeys, T. Lahaye. Many-body physics with individually controlled Rydberg atoms. Nat. Phys., 16, 132(2020).

    [15] A. W. Young, W. J. Eckner, W. R. Milner, D. Kedar, M. A. Norcia, E. Oelker, N. Schine, J. Ye, A. M. Kaufman. Half-minute-scale atomic coherence and high relative stability in a tweezer clock. Nature, 588, 408(2020).

    [16] G. Bornet, G. Emperauger, C. Chen, B. Ye, M. Block, M. Bintz, J. A. Boyd, D. Barredo, T. Comparin, F. Mezzacapo, T. Roscilde, T. Lahaye, N. Y. Yao, A. Browaeys. Scalable spin squeezing in a dipolar Rydberg atom array(2023).

    [17] W. J. Eckner, N. D. Oppong, A. Cao, A. W. Young, W. R. Milner, J. M. Robinson, J. Ye, A. M. Kaufman. Realizing spin squeezing with Rydberg interactions in a programmable optical clock(2023).

    [18] G. Semeghini, H. Levine, A. Keesling, S. Ebadi, T. T. Wang, D. Bluvstein, R. Verresen, H. Pichler, M. Kalinowski, R. Samajdar, A. Omran, S. Sachdev, A. Vishwanath, M. Greiner, V. Vuletić, M. D. Lukin. Probing topological spin liquids on a programmable quantum simulator. Science, 374, 1242(2021).

    [19] E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, M. Saffman. Observation of Rydberg blockade between two atoms. Nat. Phys., 5, 110(2009).

    [20] C. Sheng, J. Hou, X. He, P. Xu, K. Wang, J. Zhuang, X. Li, M. Liu, J. Wang, M. Zhan. Efficient preparation of two-dimensional defect-free atom arrays with near-fewest sorting-atom moves. Phys. Rev. Res., 3, 023008(2021).

    [21] D. Barredo, S. De Léséleuc, V. Lienhard, T. Lahaye, A. Browaeys. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science, 354, 1021(2016).

    [22] S. Wang, W. Zhang, T. Zhang, S. Mei, Y. Wang, J. Hu, W. Chen. Accelerating the assembly of defect-free atomic arrays with maximum parallelisms. Phys. Rev. Appl., 19, 054032(2023).

    [23] W. Tian, W. J. Wee, A. Qu, B. J. M. Lim, P. R. Datla, V. P. W. Koh, H. Loh. Parallel assembly of arbitrary defect-free atom arrays with a multitweezer algorithm. Phys. Rev. Appl., 19, 034048(2023).

    [24] J. Vala, A. V. Thapliyal, S. Myrgren, U. Vazirani, D. S. Weiss, K. B. Whaley. Perfect pattern formation of neutral atoms in an addressable optical lattice. Phys. Rev. A, 71, 032324(2005).

    [25] H. Kim, W. Lee, H.-G. Lee, H. Jo, Y. Song, J. Ahn. In situ single-atom array synthesis using dynamic holographic optical tweezers. Nat. Commun., 7, 13317(2016).

    [26] W. Lee, H. Kim, J. Ahn. Three-dimensional rearrangement of single atoms using actively controlled optical microtraps. Opt. Express, 24, 9816(2016).

    [27] K.-N. Schymik, V. Lienhard, D. Barredo, P. Scholl, H. Williams, A. Browaeys, T. Lahaye. Enhanced atom-by-atom assembly of arbitrary tweezer arrays. Phys. Rev. A, 102, 063107(2020).

    [28] D. Ohl de Mello, D. Schäffner, J. Werkmann, T. Preuschoff, L. Kohfahl, M. Schlosser, G. Birkl. Defect-free assembly of 2D clusters of more than 100 single-atom quantum systems. Phys. Rev. Lett., 122, 203601(2019).

    [29] W. Lee, H. Kim, J. Ahn. Defect-free atomic array formation using the Hungarian matching algorithm. Phys. Rev. A, 95, 053424(2017).

    [30] H. J. Metcalf, P. van der Straten. Laser Cooling and Trapping(1999).

    [31] N. Schlosser, G. Reymond, I. Protsenko, P. Grangier. Sub-poissonian loading of single atoms in a microscopic dipole trap. Nature, 411, 1024(2001).

    [32] T. Grünzweig, A. Hilliard, M. McGovern, M. F. Andersen. Near-deterministic preparation of a single atom in an optical microtrap. Nat. Phys., 6, 951(2010).

    [33] B. J. Lester, N. Luick, A. M. Kaufman, C. M. Reynolds, C. A. Regal. Rapid production of uniformly filled arrays of neutral atoms. Phys. Rev. Lett., 115, 073003(2015).

    [34] M. O. Brown, T. Thiele, C. Kiehl, T.-W. Hsu, C. A. Regal. Gray-molasses optical-tweezer loading: controlling collisions for scaling atom-array assembly. Phys. Rev. X, 9, 011057(2019).

    Yaoting Zhou, Shaoxiong Wang, Jiayi Chen, Yifei Hu, Zhongxiao Xu, Heng Shen, "A universal algorithm for defect-free atomic array with arbitrary periodic geometries [Invited]," Chin. Opt. Lett. 21, 110010 (2023)
    Download Citation